学科分类
/ 1
7 个结果
  • 简介:目的采用基于Lopez-Mancini-CalbetDivergence(LMCD)的统计复杂度分析方法,对充血性心力衰竭信号、心脏性猝死信号与正常窦性心律信号进行统计复杂度分析。方法采用Bandt-Pompe算法对符号序列进行模式概率统计,分析了充血性心力衰竭信号、心脏性猝死信号与正常窦性心律信号的统计复杂度。结果3种心律信号的统计复杂度存在差异,正常窦性心率信号的统计复杂度最高,充血性心力衰竭信号次之,心脏性猝死信号最低。方差分析表明,基于LMCD的分析方法得出的3种心电信号的统计复杂度差异具有统计学意义。结论采用LMCD的统计复杂度方法可以有效地区分3种不同生理病理状态下心电信号,为辅助临床诊断提供了一种新手段。

  • 标签: LMCD 正常窦性心率 充血性心力衰竭 心脏性猝死
  • 简介:探索心电信号的有效标定方法.利用小波变换良好的时频聚焦性和多孔算法的时不变性,并结合时域的标定参考信息,实现对ECG的准确标定.结果表明在Matlab6.5仿真环境下,对MIT/BIH心电数据库中的数据进行测试,准确率可达99.5%,并且满足CSEworkingParty提出的心电检测误差标准.在波形失真较小情况下,用该法可实现对ECG的自动标定.

  • 标签: 小波变换 多孔算法 ECG 特征检测 自动标定 CSE参考标准
  • 简介:目的研究用小波变换去除心电图信号中呼吸信号的方法.方法采用db4小波对采样频率为200Hz的心电图信号作离散小波变换的多层分解,并与呼吸信号的频率成分比较,发现呼吸信号分布在心电图信号分解后第8、9、10层细节中,去除这些成分和高频干扰,对剩下的分量重构.结果比较成功地纠正了心电信号的基线,去除了低频呼吸信号的干扰.结论小波变换的方法能够去除心电信号中的呼吸信号干扰.

  • 标签: 心电信号 呼吸信号 小波变换 小波重构
  • 简介:当前癫痫自动检测方法,通常采用希尔伯特黄变换结合脑电信号变换规律进行检测,易受到噪声的干扰,检测结果存在一定的误差。据此,深入研究基于子波变换的癫痫脑电信号检测方法,依据子波变换检测癫痫脑电信号的原理,采用子波变换对含噪的脑电信号进行去噪后,考虑到癫痫患者发病时,脑电信号里异常特征波导致信号波动幅度较大,采用TQWT小波分解并重构脑电信号,提取重构后的脑电信号里有效值与峰峰值指标构成特征分量,根据特征分量设定正常与发病两种样本,通过支持向量机(supportvectormachine,SVM)分类器对脑电波信号样本分类,实现患者癫痫脑电信号的准确检测。实验结果表明,所提方法可有效检测癫痫脑电信号,检测灵敏度、特异性和准确率均值分别是98.73%、18.84%、98.87%,适用于癫痫脑电信号检测。

  • 标签: 子波变换 癫痫 脑电信号 检测 去噪 支持向量机
  • 简介:采用独立分量分析中的信息极大化快速算法初步探讨了表面肌电信号的分解问题.研究结果表明,独立分量分析对肌肉轻度收缩力水平下(<10%MVC)表面肌电信号的分解有较好的效果,可以作为表面肌电信号分解的一种预处理手段.

  • 标签: 表面肌电信号 轻度 研究结果 初步探讨 收缩力 独立分量分析
  • 简介:为了提高P波检测准确率,利用小波变换模极大值对在多尺度上的变化规律能表征信号突变点的性质,结合人体生理特性的检测策略进行心电信号P波的跨尺度检测.同时,引入反向传播神经网络对已检出的准P波再次进行确认与识别.经MIT数据库实验表明,P波检测准确率达到97%.

  • 标签: 小波变换 P模极大值对 神经网络 P波检测 心电信号
  • 简介:当前肌肉疲劳表面肌电信号(surfaceelectromgography,sEMG)特征提取方法,忽略了非线性跳错信号的影响,且不能在非平稳状态下进行特征提取,存在特征提取准确度差的问题。提出基于小波变换的肌肉疲劳sEMG特征提取研究,采用小波变换对所采集的样本去噪,结合时域、频域特征分析法,融合傅里叶变换方法对肌电信号中的线性特征进行提取,根据带谱近似熵理论对非线性挑错信号进行特征回归分析,并利用拟态分解函数和希尔伯特变换法对肌电信号进行时频特征的整合提取,最终完成基于小波变换的肌肉疲劳sEMG特征提取研究。实验验证,所提方法具有可行性,且将1000个肌电信号样本分成5组,对其中的跳错信号进行特征提取,所提方法准确度较文献方法高出75%,在非平稳状态下将200个肌电信号样本分成5组进行特征提取,所提方法准确度较文献方法高出33%。由此得出,所提方法优于当前特征提取方法。

  • 标签: 小波变换 时域特征 频域特征 表面肌电信号 肌肉疲劳