简介:受壁面作用和稀薄效应等的影响,微纳尺度通道内的气体流动有别于宏观流动现象.采用分子动力学方法,研究纳米通道中气体的Poiseuille流动,主要对通道内气体黏度特性进行了分析.利用牛顿粘性定律,定义了气体的当地等效黏度.根据模拟结果,可将纳米通道内气体划分为中心区和近壁区两个部分,中心区气体当地黏度与宏观黏度一致,但是在近壁面区,气体受到壁面原子的作用,气体的当地黏度小于宏观黏度值.研究发现:1)不同的气体密度、流固作用势能以及温度下,通道中心区域的气体当地等效黏度均符合对应温度和压强条件下的气体宏观实测黏度值;2)在纳米尺度气体流动中,气体密度越小,稀薄程度越高,气体偏离热力学平衡态越远,所以壁面对气体等效黏度的影响随密度的减少而增大,壁面影响厚度也随之增大;3)气体黏度的壁面影响厚度在10nm量级,该厚度不随温度和流固作用势能的变化而变化,但是密度越小,壁面影响厚度越大.
简介:软件的图形用户界面(GUI)的视觉设计影响着用户的使用体验.在没有既定标准的情况下,测试人员对GUI评分的主观性和大量的重复性工作,会造成GUI测试的评分偏差和效率低下.针对上述问题,本研究工作构建了基于云平台的软件GUI自动测试系统,分别使用HOG+SVM模型和AlexNet模型对GUI图像进行特征提取并分类.考虑到软件GUI数据样本量小,提出利用迁移学习策略改善AlexNet网络的性能.针对用户的多样性和算法对计算性能的需求,GUI自动测试系统部署在云平台上,用户可以对软件GUI进行实时评估.实验证明,系统用于GUI自动测试具有良好的性能,并且可以避免主观因素的影响以及减轻软件测试员的工作量.
简介:域自适应算法是一种能有效解决训练集(源域)和测试集(目标域)样本分布不一样但是具有相关性的方法.文章提出一个跨领域分布适配超限学习机(DDM-ELM)用于解决域自适应问题.DDM-ELM旨在基于超限学习机的框架下,充分利用丰富的有标签源域样本和无标签目标域样本,得出一个精确的目标域分类器.具体来说,DDM-ELM同时满足以下目标:1)最小化源域样本的分类误差;2)通过最小化投影最大化均值偏差来有效减小源域和目标域的分布差距;3)利用目标域样本的流形正则化来探索目标域样本的几何机构特性.这使得DDM-ELM能在同时继承超限学习机优点的前提下更加适合于目标域样本.经过大量的实验结果证明,相比于几种先进的域自适应方法,DDM-ELM在分类准确率和效率上均有所提高.