学科分类
/ 1
2 个结果
  • 简介:针对BPR模型收敛速度慢的问题,RandleS提出一种非均匀采样非隐式反馈数据方法AOBPR模型来加快收敛速度,可是该算法只能利用隐式反馈数据.为了改进其算法的不足,我们提出了一种将AOBPR模型与经典的基于矩阵分解的SVD++算法相结合的算法AOBPR_SVD++.改进后的算法不仅能利用隐式反馈数据也能利用显式反馈数据.最后通过在两个真实数据集中进行实验验证,表明改进后的算法可以获得更好的推荐效果.

  • 标签: 推荐系统 协同过滤 隐式反馈 显式反馈 矩阵分解
  • 简介:LDA主题模型是文本挖掘领域的重要算法,同时在推荐系统当中也有不错的表现.通过LDA主题模型挖掘用户感兴趣的主题,是目前最常用的用户兴趣主题挖掘方法之一.为了提高LDA主题模型应用在推荐系统时的推荐质量,我们提出了一种基于负样本进行学习的方法negLDA.通过创造出负样本来学习用户对物品的负面预测评分,同时结合正样本学习得到的正面预测评分,从正反两个方面进行综合评测,从而更加精确地衡量出用户对物品的预测评分.通过在MoviesLens-100k、MovieLens-1M、FilmTrust这三个数据集上的实验,表明所提出的算法在精确率、召回率、AUC三个指标上相比传统算法均有一定改进.

  • 标签: LDA主题模型 推荐系统 负样本 矩阵分解 协同过滤