学科分类
/ 1
6 个结果
  • 简介:对具有重的广义特征值问题,采用基于快速Fourier变换的方法进行求解,实现重辨识.文章中采用多次单点初始激励的方式,仿真计算测点上的自由振动响应,对响应进行快速Fourier变换后得到频域数据.而后对频域数据分析,得到固有频率和多组测点振型数据.根据单频和重频处的振型特性,引入振型的余弦相似度为判别参数,辨识重.数值算例表明,该方法可有效实现重辨识,同时特征值的计算能达到较高精度.

  • 标签: 广义特征值问题 重根辨识 快速Fourier变换法 固有频率 动力学响应
  • 简介:以单壁纳米碳为例,建立了其分子动力学模型,并对(5,5)和(10,10)扶手椅型纳米碳与刚性壁的正碰撞过程和简谐纵波传播过程进行了模拟.在此基础上,探讨如何用弹性杆模型来研究纳米碳的动力学问题.研究表明,弹性杆模型可以描述单壁扶手椅型纳米碳与刚性壁高速碰撞的动力学行为;对于纵波传播中的色散描述,则需在弹性杆模型中计入纳米碳微结构引起的非局部弹性效应.

  • 标签: 纳米碳管 冲击 色散 分子动力学模拟
  • 简介:将广义微分求积法(GDQR)用于分析输流曲的流致振动问题,这是一个新的尝试.基于输流曲的面内振动微分方程,利用GDQR法使曲系统在空间域上得以离散化,从而获得了输流曲的动力学方程组.数值算例中,计算得到了输流曲在几种典型边界条件下的固有频率以及曲发生失稳的临界流速等,这些计算结果与前人的解析解结果吻合较好.此外,还给出了两端固定输流曲典型的动力响应行为.研究表明,GDQR法极易处理输流曲这一类动力学模型,精度令人满意,进一步的研究可望推广到输流管道的非线性振动分析中.

  • 标签: QR法 流致振动 GD 广义微分求积法 振动微分方程 动力学方程组
  • 简介:根据古典阴阳互补和现代对偶互补的基本思想,通过罗恩早已提出的一条简单而统一的新途径,系统地建立了弹性膜结构动力学的各类非传统Hamilton型变分原理.这种新的非传统Hamilton型变分原理能反映这种动力学初值一边值问题的全部特征.文中首先给出膜结构动力学的广义虚功原理的表式,然后从该式出发,不仅能得到膜结构动力学的虚功原理,而且通过所给出的一系列广义Legendre变换,还能系统地成对导出弹性膜结构动力学的5类变量(Pα,Pβ,pγ,Vα,Vβ,Vγ,Nα,Nβ,Sαβ,εα,εβ,εαβ,u,v,w)、4类变量(Pα,Pβ,pγ,Vα,Vβ,Vγ,Nα,Nβ,Sαβ,εα,εβ,εαβ,u,v,w)、3类变量(Nα,Nβ,Sαβ,εα,εβ,εαβ,u,v,w)和2类变量(Nα,Nβ,Sαβ,u,v,w)非传统Hamilton型变分原理的互补泛函、以及相空间(Pα,Pβ,pγ,u,v,w)非传统Hamilton型变分原理的泛函与1类变量(u,v,w)非传统Hamilton型变分原理势能形式的泛函.同时,通过这条新途径还能清楚地阐明这些原理的内在联系.

  • 标签: 非传统Hamilton型变分原理 膜结构 几何非线性 弹性动力学 对偶互补 初值-边值 问题 相空间
  • 简介:考虑环境阻尼因素的影响,研究了具有运动约束作用Kelvin-Voigt型输流曲的混沌运动现象.数值仿真表明,输流曲系统在某些参数取值时具有混沌运动的可能,管道材料的粘弹性系数和环境阻尼等因素对曲的动力响应产生较大的影响.这些结论可为工程管道系统的铺设与设计提供参考.

  • 标签: 混沌运动 阻尼作用 环境 t型 数值仿真 约束作用
  • 简介:根据古典阴阳互补和现代对偶互补的基本思想,通过罗恩提出的一条简单而统一的新途径,系统地建立了平面框架结构折线型弹塑性动力学的各类非传统Hamilton型变分原理.文中首先给出平面框架结构折线型弹塑性动力学的广义虚功原理的表式,然后从该式出发,不仅能得到平面框架结构折线型弹塑性动力学的虚功原理,而且通过所给出的广义Legendre变换,还能系统地成对导出平面框架结构折线型弹塑性动力学的5类变量分原理的互补泛函,以及1类变量和相空间非传统Hamilton型变分原理的泛函.同时,通过这条新途径还能清楚地阐明这些原理的内在联系.

  • 标签: 框架结构 弹塑性动力学 相空间 非传统HAMILTON型变分原理 初值-边值问题