简介:本文对长短波相互作用方程组作行波变换后转化成第一种椭圆方程,利用第一种椭圆方程的解和Bcklund变换,构造了长短波相互作用方程组的无穷序列新解.这里包括了椭圆函数解、双曲函数解、指数函数解和有理函数解.
简介:分析了非线性SanVenant方程组的解的特性,并在统一考虑阻力项的影响的基础上,分析了用Pressmainn格式求解非线性SanVenant方程组的数值稳定性和收敛性.研究了φ和θ不同取值情况下,差分方程数值解的收敛情况与相对时间步长(Δt)/(Δx)和相对波长L/(Δx)的关系.指出数值解总是存在衰减和弥散现象,在实际模拟过程中,应合理选择φ和θ值,以兼顾数值衰减幅度和模拟速度.
简介:研究了一类抽象耦合非线性梁方程组在Hilbert空间中的初值问题.首先运用Galerkin方法对两个方程进行一定的处理,然后证明收敛性,最后证明了上述非线性梁方程组的整体弱解的存在性.
简介:运用Galerkin方法讨论了一类具有记忆项的耦合非线性抽象方程组的初值问题,根据方程组的特点,巧妙地对两个方程进行相加,并结合微积分的性质得到了所要的结果,然后研究收敛性,最后证明了方程组整体弱解的存在性.
简介:基于非线性动力学理论研究了不可压电活性聚合物圆柱壳在内表面周期载荷作用下的运动与破坏等动力响应问题.通过对所得描述圆柱壳内表面运动的非线性常微分方程的数值计算和动力学定性分析,发现存在临界载荷和临界电压;当周期载荷的平均载荷值小于临界载荷及外加电压小于临界电压时,圆柱壳的运动随时间的演化是拟周期性的非线性振动.反之,圆柱壳将被破坏.讨论了外加电场和载荷参数对临界值和圆柱壳运动特性的影响.
长短波相互作用方程组的无穷序列新解
非线性San Venant方程组数值稳定性分析
一类耦合抽象非线性梁方程组的整体解
一类具有记忆项的耦合非线性抽象方程组的整体解
周期载荷下电活性聚合物圆柱壳的动力响应