学科分类
/ 2
22 个结果
  • 简介:为在外测数据处理中获取更高精度目标部位修正结果,解决已知目标几何尺寸难以精确修正的问题,提出采用捷惯导系统姿态修正跟踪部位的方法.根据捷惯导系统遥测四元数信息计算姿态旋转矩阵,利用外测处理中各个参照坐标系的相互关系,修正垂线偏差的影响,实现跟踪部位位置参数保精度修正.通过测试场景仿真计算,与常用速度矢量修正法进行比较、验证,结果表明姿态修正方法精确可行、结果正确,满足数据处理的精度要求和结果评定需要.

  • 标签: 姿态 垂线偏差 跟踪部位修正 坐标系
  • 简介:建立了参数弹性地基上的正交异性矩形薄板自由振动位移函数微分方程,并得到其一般解.这可用以精确地求解板在任意边界条件下的自由振动问题.以四边固定的正方形板为例进行了分析,计算过程简单,便于实际应用.亦适用于求解单参数弹性地基和各向同性板情形。

  • 标签: 弹性地基 自由振动 正交异性板 频率
  • 简介:提出了一种新的求解曲守恒律方程(组)的四阶半离散中心迎风差分方法.空间导数项的离散采用四阶CWENO(centralweightedessentiallynon-oscillatory)的构造方法,使所得到的新方法在提高精度的同时,具有更高的分辨率.使用该方法产生的数值粘性要比交错的中心格式小,而且由于数值粘性与时间步长无关,从而时间步长可根据稳定性需要尽可能的小.

  • 标签: 对流扩散方程 迎风 求解 双曲守恒律方程 时间步长 差分方法
  • 简介:摄动法近似应当保辛.本文指出,有限元位移法自动保辛,有限元混合能表示也保辛.摄动法的刚度阵Taylor级数展开能证明保辛;混合能的Taylor级数展开摄动也证明了保辛.但传递辛矩阵的Taylor级数展开摄动却不能保辛.辛矩阵只能在乘法群下保辛,故传递辛矩阵的保辛摄动必须采用正则变换的乘法.虽然刚度阵加法摄动、混合能矩阵加法摄动与传递辛矩阵正则变换乘法摄动都保辛,但这3种摄动近似并不相同.最后通过数值例题给出了对比.

  • 标签: Taylor级数展开 数值比较 正则变换 辛矩阵 混合能 矩阵加法
  • 简介:由于一类悬臂含间隙振动系统具有典型非光滑特性和有明显的非线性,这直接导致了系统发生分又与混沌现象的可能性.为此针对该系统的混沌现象,利用基于能量的开环控制策略,构造有界控制器对混沌行为进行控制,混沌运动可被引导到稳定的目标周期轨道,并对控制的收敛速度进行分析,数值模拟结果表明了该控制策略的有效性与可行性,可为碰振系统的优化设计,振动控制和安全运行提供了理论参考.

  • 标签: 非光滑特性 分叉 混沌 碰振系统
  • 简介:研究了由色关联的色噪声驱动的稳杜芬模型的稳态概率密度函数及状态变量的均值和标准方差.首先应用一致有色噪声近似方法,推导出了具有色关联的色噪声驱动的稳杜芬模型的稳态概率密度函数的解析表达式.分析了噪声的"有色性"及关联性对稳态密度函数和状态变量的均值、标准方差的影响,发现了一些由白噪声激励的杜芬模型中不会出现的新的非线性现象:加性噪声强度、噪声之间的关联系数和关联时间都能够诱导非平衡相变.

  • 标签: 色噪声驱动 色关联 模型 稳态分析 双稳 概率密度函数
  • 简介:本文利用基于Simulink的数值模拟方法研究了高斯色噪声激励下势阱系统的逻辑随机共振现象.首先对于独立的加性和乘性高斯色噪声激励下的势阱系统,发现仅有加性噪声作用不能实现可靠的逻辑操作,但加性噪声和乘性噪声共同作用可诱导良好的逻辑随机共振现象.和高斯白噪声相比较,高斯色噪声激励下能产生可靠逻辑随机共振的(D,Q)平面上的区域范围更大.进一步讨论了加性和乘性噪声之间的关联对于逻辑随机共振现象的影响,发现噪声关联对逻辑随机共振现象起着破坏性的作用.

  • 标签: 逻辑随机共振 三势阱系统 高斯色噪声
  • 简介:研究了乘性噪声和加性噪声共同作用下含有两种不同时滞项的稳系统中的平均首次穿越时间.首先通过近似方法得到了平均首次穿越时间的解析式,然后研究了乘性噪声强度、时滞量及噪声关联强度对平均首次穿越时间的影响.当噪声关联强度取正值时,平均首次穿越时间T1(x-→x+)是乘性噪声强度及两种时滞量的非但调函数,是噪声关联强度的单调递增函数.包含在确定力与振荡力中的时滞量分别影响T1(x-→x+)的最大值及对应的噪声强度.平均首次穿越时间T2(x+→x-)是包含在确定力中的时滞量的非单调函数,是乘性噪声强度、另一种时滞量及噪声关联强度的单调递减函数.

  • 标签: 平均首次穿越时间 时滞 乘性噪声 加性噪声
  • 简介:研究一类具有维自治常微分方程组形式的新的类Chen系统的余维二分岔.首先通过坐标变换,把原系统的平衡点平移到新系统的原点.通过对平移后所得新系统的Jacobi矩阵的分析,推导系统发生余维二Bautin分岔的参数条件.借助计算机对类Chen系统进行数值仿真,得到该系统发生Bautin分岔的分岔图,与理论推导结果相符合,从而验证了理论推导的正确性.

  • 标签: 类chen系统 余维二 Bautin分岔 数值仿真
  • 简介:采用Timoshenko梁修正理论研究了有梯度界面层材料梁的振动问题,利用静力方程确定了有梯度界面层材料梁的中性轴位置,在此基础上应用Timoshenko梁修正理论建立了有梯度界面层材料梁的振动方程,求得其自振频率表达式及其在简谐荷载作用下强迫振动的解析解.讨论分析了梯度界面层高度等因素对有梯度界面层材料梁的振动影响,并用有限元法验证了Timoshenko梁修正理论.通过实例计算,得到了梯度界面层高度等因素对有梯度界面层材料梁振动特性有较大影响的结论.

  • 标签: TIMOSHENKO梁 梯度界面层 中性轴 振动
  • 简介:通过引入不同的对偶变量,将粘性流体的扰动问题化为具有良好结构特性的可解耦Hamilton系统.利用可解耦Hamilton系统微分形式与积分形式的等价性,导出了粘性流体扰动问题的Hamilton混合能变分原理,并建立了本征函数系之间的正交关系.

  • 标签: 哈密顿体系 粘性流体 变分原理 双正交关系
  • 简介:基于Poincaré映射方法对一类两自由度碰撞系统进行研究.经过详细的理论演算得到单碰周期1/n的亚谐周期运动的存在性判据,并能精确地找到亚谐周期运动的初始位置.表明碰振系统的周期运动研究可以通过解析与数值方法的结合去实现.数值模拟表明了亚谐周期运动的存在性判据的正确性,并通过计算Jacobi矩阵的特征值可判断周期运动的稳定性及分岔.

  • 标签: 碰撞系统 亚谐运动 POINCARÉ映射 稳定性
  • 简介:构建了带有延迟的脉冲控制的维股票价格系统,研究了脉冲控制参数和延迟变化对股票价格的稳定性影响.应用脉冲微分方程控制稳定性理论,得到了在带有延迟的脉冲控制系统中,由原先的不稳定和发散达到稳定的保守且充分的条件,从而使股票金融市场达到了一个新的持续发展的稳定状态.利用Matlab软件对该系统进行数值仿真,验证了脉冲控制方法的可行性,有效性和提出理论的准确性.结果表明合理脉冲控制可以有效控制带延迟系统的稳定性.

  • 标签: 延迟 股票价格系统 脉冲微分方程 控制 稳定性
  • 简介:随着航空航天事业的发展,对各种材料性能的要求也越来越高.而蜂窝夹层板在结构和性能上具有许多优点,已在航空航天等领域应用广泛,并在一些重要结构中充当承力部件,但由于其特殊的蜂窝结构,相对于一般的板,在受力时会发生比较大的变形,所以用非线性理论研究蜂窝夹层板结构,并考察不同参数对非线性振动特性的影响,具有重要的理论和实际意义.如今,蜂窝夹层板的几何非线性问题已引起更多学者的关注.在一般均质理论的假设下,一些学者已经研究了各项同性蜂窝夹层板板的非线性动力学特性.研究了一类受面内激励和横向外激励联合作用下的四边简支蜂窝夹层板在主参数共振-1:2内共振时的Hopf分叉问题.首先利用多尺度法得到系统的平均方程,然后结合分叉理论得到了系统的分叉响应方程,根据对分叉响应方程的分析,得到了六种不同的分叉响应曲线并给出了系统产生Hopf分叉的条件.利用数值方法得到系统在参数平面的分叉集,通过对不同分叉区域的分析发现,随着参数的变化系统平衡点会分叉为两类周期解,随后周期解会通过广义静态分叉为准周期解,或者通过广义Hopf分叉为3D环面.

  • 标签: 双Hopf分叉 蜂窝夹层板 不变环面 周期解
  • 简介:以某型航空发动机高压转子系统为研究对象,基于不均匀分布稳态温度场,建立了某高压转子系统维实体单元有限元模型以及稳态温度场下转子系统热-结构耦合振动方程,利用热-结构-动力学耦合理论,采用间接耦合法,通过稳态温度场分析和静力分析生成热应力,然后进行预应力模态分析,最后利用模态叠加法进行不平衡量和热弯曲耦合响应分析,实现热-结构-动力学耦合计算.通过稳态温度场对典型级盘稳态响应影响的分析以及不平衡量与热弯曲耦合稳态响应分析,发现耦合响应对转子系统各级盘的振动响应有较大影响.

  • 标签: 三维转子系统 有限元法 固有频率 稳态温度场 热弯曲耦合响应
  • 简介:利用维有限元方法,分析了风速、攻角、导线分裂、磁场力和防舞装置等各种因素对导线舞动的影响.结果表明:风速、攻角和导线分裂等对导线舞动的影响很大;磁场力的影响很小.为减轻和防止导线舞动,在导线距离杆塔1/3和2/3处施加压重,可以获得明显的防舞效果.

  • 标签: 输电导线 三维有限元 导线舞动 攻角 导线分裂 振动现象
  • 简介:根据维混沌系统Lorenz吸引子和Chen’s吸引子线性部分的系数特征,构造了一个维非线性动力系统,并研究了其混沌动力学特征,包括相轨迹图、最大Lyapunov指数、Lyapunov指数谱和Poincare映射,这些特征都表明,该系统具有混沌吸引子。

  • 标签: 混沌反控制 三维混沌系统 LYAPUNOV指数 POINCARE映射
  • 简介:研究外部扰动力矩作用下航天器的混沌姿态运动,引入Deprit正则变量建立系统的Hamilton结构,应用Melnikov方法预测系统产生的稳定流形和不稳定流形的横截相交,得到系统产生混沌姿态运动的条件。研究表明:随着转子转动惯量的增加,引起系统出现混沌姿态运动的激励频率的范围逐渐减小。最后,对相空间轨线的数值模拟表明理论分析的可靠性。

  • 标签: 航天器姿态动力学 混沌 Melnilov方法 Deprit变量