学科分类
/ 1
15 个结果
  • 简介:针对异步电机矢量控制需要实现定、转子电路解耦的一个关键问题是准确地观测转子磁链.提出了一种以异步电机在两相同步旋转坐标系下的定子电流和转子磁链为状态变量的基于滑模变结构思想的转子磁链观测器,对滑模变结构输入控制信号的设计使得滑模运动速度与轨迹和滑模面的距离相关联,并利用李亚普诺夫理论证明了算法的收敛性.通过仿真表明,该方法具有较高的转子磁链观测准确度,对转子电阻的变化具有很强的鲁棒性,能够改善异步电机矢量控制调速系统的动静态性能.

  • 标签: 异步电机 转子磁链 滑模观测器
  • 简介:给出了对转子-轴承系统的分岔与混沌等复杂动力学行为进行控制的思想.应用washout-filter状态反馈控制方法进行分岔与混沌控制器的设计,用以改进系统转速变化时转轴响应的分岔与混沌特性.通过调整控制器的参数来影响转子系统的动力学行为,控制其运行的稳定性.数值模拟结果表明,随着转子-轴承系统转速的不断提高,系统的动力学行为会发生较大变化,此时应用washout-filter状态反馈控制方法进行分岔与混沌控制,理论上可起到较好的控制效果.

  • 标签: 转子-轴承系统 分岔 混沌 控制分析 状态反馈控制 非线性转子动力学
  • 简介:转子系统的不对中问题在旋转机械中非常普遍,是引起严重整机振动的主要原因之一.特别地,以先进涡扇发动机转子系统为代表的带有弹性支承、内外布置的多转子系统,其动力学特性具有特殊性,不对中的理论问题与工程需求十分突出.本文首先针对两类不对中问题(联轴器不对中和支点不对中),评述了目前不对中建模方法、不对中转子系统的动力学和振动特性方面的代表性研究成果.其次,针对航空发动机转子系统,详细综述了目前已有的套齿联轴器、弹性支承组件的动力学研究成果.在此基础上,作者针对其具体结构特征,进行了航空发动机转子系统不对中成因与模式分类,初步建立了联轴器不对中和支点不对中的转子系统动力学模型并进行了振动特性分析.

  • 标签: 转子系统 联轴器不对中 支点不对中 动力学模型 航空发动机转子系统
  • 简介:以灰色预测控制理论为基础,采用现代控制理论中的二次型优化原理,以控制力和响应加权最小为目标函数,设计了两种基于灰色预测理论的转子系统振动主动控制方案--灰色GM(1,1)预测优化控制方案和灰色Verhuslt预测优化控制方案.并将该两种方案分别应用于带电磁阻尼器转子轴承系统的转子振动主动控制中,通过数值仿真验证了两种控制方法的有效性,并对两种方法的控振效果进行了比较.

  • 标签: 转子系统 振动主动控制 灰色GM(1 1)预测优化控制 灰色Verhuslt预测优化控制
  • 简介:基于转子动力学、Hertz理论和非线性动力学理论,针对一端支座松动的滚动轴承-转子系统的运动特征,考虑了松动间隙的非线性情况,建立了系统的动力学方程.在对转子系统动力学方程进行数值积分之后,通过分叉图、庞加莱图、相图和关联维数等显示了转子系统随转速变化和松动间隙的扩展会出现复杂动力学现象,并且研究了滚动轴承-转子系统在支承松动时的分岔和混沌运动及其变化规律,得出了有工程价值的结论,这些结论可为该类故障的诊断提供参考.

  • 标签: 支座松动 混沌运动 故障诊断 动力学 滚动轴承-转子系统
  • 简介:以某型航空发动机高压转子系统为研究对象,基于不均匀分布稳态温度场,建立了某高压转子系统三维实体单元有限元模型以及稳态温度场下转子系统热-结构耦合振动方程,利用热-结构-动力学耦合理论,采用间接耦合法,通过稳态温度场分析和静力分析生成热应力,然后进行预应力模态分析,最后利用模态叠加法进行不平衡量和热弯曲耦合响应分析,实现热-结构-动力学耦合计算.通过稳态温度场对典型级盘稳态响应影响的分析以及不平衡量与热弯曲耦合稳态响应分析,发现耦合响应对转子系统各级盘的振动响应有较大影响.

  • 标签: 三维转子系统 有限元法 固有频率 稳态温度场 热弯曲耦合响应
  • 简介:对引起航空发动机压气机高压转子叶片振动故障的原因进行了分析.指出压气机在某种非正常工作状态下产生的高声强噪声中所包含的高强度声波,是激起转子叶片共振或颤振的原因之一,通过理论分析和实验研究,得出了如下结论:当转子叶片在机械激振和气动激振作用下已处于高应力工作状态时,如果再叠加由声波激起的共振应力,就会导致裂纹甚至折断.

  • 标签: 航空发动机 转子叶片 声波激励 振动 试验
  • 简介:针对转子—轴承系统中滚动球轴承的动力学相似问题,提出一种考虑非线性振动特性的轴承系统相似模型建立方法.首先,建立滚动球轴承整体的非线性振动微分方程,运用积分模拟法推导了轴承整体的非线性振动特性相似关系,并结合滚动球轴承的动力学相似关系得到滚动球轴承系统的相似设计准则;其次,应用所得的相似准则,以深沟球轴承C204JUT为原型、6208为模型进行数值仿真实例计算,通过采用Newmark-β算法计算得到的分叉图分析了转速ω、径向载荷Fr、阻尼C及径向游隙γ大小对原型和模型轴承系统振动位移或速度响应的影响;最后,通过对比原型和模型的各参数(ω、Fr、C、γ)分叉图中分叉区间、趋于稳定运动参数值大小以及进入稳定周期运动时的稳态响应值大小验证相似准则的准确性和有效性.通过分析得到以下结论:1滚动球轴承非线性振动特性参数(如振动响应、结构阻尼等)相似关系可由轴承结构参数相似关系确定;2原型与模型非线性运动的分叉图形状一致,且模型能够很好的预测原型稳态振动响应,因此可将模型轴承用来预测原型轴承的非线性振动行为.

  • 标签: 转子—轴承系统 滚动球轴承 非线性特性 动力学相似
  • 简介:在高参数汽轮机组和航空发动机等旋转机械中,转子-密封中的气流激振力对转子非线性动力学特性的影响不容忽视.本研究中建立了转子-密封系统三维流场模型,应用计算流体动力学(CFD)软件对可压缩气流流场进行模拟计算,获得了密封流场特性.由流场计算结果进一步获得了Muszynska气流激振力模型中的相关经验系数,使得此模型更加适用于气流激振力的计算.在对转子一密封系统进行非线性动力学分析过程中应用幂级数展开形式建立了系统幂级数模型.利用平均法得到气流激振力的1:2亚谐共振分岔方程,进一步应用奇异性理论和Hopf分岔理论研究了系统1:2亚谐共振的转迁集和系统超临界Hopf分岔与亚临界Hopf分岔的存在条件.通过参数控制方法抑制了转子-密封系统出现亚临界分岔的出现,使得系统稳定性提高.本文的分析结果对工程设计和操作具有一定的指导作用和意义.

  • 标签: 转子动力学 气流激振力 亚谐共振 奇异性理论 HOPF分岔
  • 简介:主要研究了具有不对中轴承支承的柔性多转子耦合系统的动力学建模和非线性动力学行为.首先在短轴承假设、小轴承的不对中量和圆盘不平衡量等几个基本假设条件下,考虑了转子的柔度、不对中轴承的非线性油膜力和圆盘的不平衡等因素后,建立了一个具有轴承不对中的10自由度多跨转子系统非线性动力学模型;最后采用数值方法研究了系统的非线性动力学行为.结果显示转子在低转速时,为同步的周期1运动,随着转速的提高,出现整数倍频的振动分量;在转速较高时,转子运动回复到周期1运动状态.

  • 标签: 多跨柔性转子 轴承不对中 非线性油膜力 非线性动力学
  • 简介:研究外部扰动力矩作用下航天器的混沌姿态运动,引入Deprit正则变量建立系统的Hamilton结构,应用Melnikov方法预测系统产生的稳定流形和不稳定流形的横截相交,得到系统产生混沌姿态运动的条件。研究表明:随着转子转动惯量的增加,引起系统出现混沌姿态运动的激励频率的范围逐渐减小。最后,对相空间轨线的数值模拟表明理论分析的可靠性。

  • 标签: 航天器姿态动力学 混沌 Melnilov方法 Deprit变量
  • 简介:针对现有轴承-转子系统动力学模型的不足,考虑非线性滚动轴承力、不平衡量、碰摩故障及陀螺效应,建立了滚动轴承-柔性对称碰摩转子系统非线性集中质量模型.通过数值计算与比较,结果表明:低转速下系雏响应主要表现为滚动轴承的变刚度振动,高转速下轴承变刚度振动的影响相对减弱,转子不平衡和碰摩故障对系统的影响逐渐增强,陀螺效应对高转速下对称转子的响应不容忽略.

  • 标签: 滚动轴承 碰摩故障 非线性响应 陀螺效应
  • 简介:针对福建龙岩某厂离心压缩机工作中电机振动的实际故障,从产生的机理分析人手,认为电机振动主要是机械原因、电气原因和安装原因造成的.振动信号大多数是一些周期信号、准周期信号、或平稳随机信号,故障特征频率都与转子的转速有关,等于转子的回转频率及其倍频或分频.以振动微分方程为基础,推导出电机振动的临界转速数学模型,得出电机的振动故障是由于工作转速与临界转速过于接近造成的.将轴的直径减小,使一阶临界转速变低,从而消除振动故障.

  • 标签: 离心压缩机 电机 振动 模型 临界转速
  • 简介:为研究鱼雷涡轮机转子系统的瞬态动力学特性,结合实际启动工况,采用传递矩阵法建立了转子系统的瞬态运动方程,并用Newmark-β数值积分方法进行求解,模拟分析了不同启动过程中转子的瞬态响应历程.结果显示:考虑不同函数形式的(线性、指数、分段)升速过程时,涡轮转子系统各阶临界转速没有显著差异,但共振峰值以及震荡收敛时间差别较大.其中,最符合实际工况的是分段函数形式的升速过程,该过程过二阶临界转速的共振峰值最小.本文的工作可以为鱼雷涡轮转子系统的优化设计提供参考.

  • 标签: 鱼雷涡轮机 转子系统 瞬态响应 传递矩阵法 Newmark-β积分法
  • 简介:考虑水平轴风力发电组齿轮箱弹性支撑的柔性连接特性,基于集中质量思想和拉格朗日方法,建立风力发电传动系统多体动力学模型,研究了齿轮箱弹性支撑对传动系统结构动力学特性的影响.利用动力学模型和模态分析方法,得到了由弹性支撑耦合到系统后的模态频率,并获取了在该模态激励下的模态动能分布.采用变参数方法进行传动系统模态对齿轮箱弹性支撑刚度变化的敏感性分析,利用模态叠加法进行齿轮箱体的动响应分析.数值求解结果和分析表明,考虑齿轮箱弹性支撑的传动系统某阶固有频率即为弹性支撑下齿轮箱体振动主模态;弹性支撑线刚度对传动系统低频率固有模态存在一定影响;齿轮箱体振动分析时应考虑1阶和2阶的低频模态较为合理.本研究工作对传动链系统方案可靠性设计和抑制传动链振动的加阻控制提供了一定理论基础.

  • 标签: 风力发电机 传动系统 扭转模态 齿轮箱弹性支撑 动态响应