学科分类
/ 1
12 个结果
  • 简介:研究了粘弹性夹层圆板的自由振动特性.基于经典弹性薄板理论和Kelvin-Voigt粘弹性本构方程,建立了粘弹性夹层圆板振动控制方程.采用分离变量法导出了粘弹性夹层圆板的自然频率及振型解析表达式,计算了固支和简支粘弹性夹层圆板的自然频率,并与有限元计算结果进行比较;讨论了粘弹性夹层圆板的夹心层比率对自然频率及衰减系数的影响.研究表明:(1)随着夹心层厚度的增大,系统频率先增大后减小,高阶时该趋势表现更为明显;(2)随着夹心层厚度的增大,衰减系数一直增大,高阶时该趋势表现更为明显.

  • 标签: 粘弹性夹层圆板 自由振动 Kelvin-Voigt 分离变量法
  • 简介:以灰色预测控制理论为基础,采用现代控制理论中的二次型优化原理,以控制力和响应加权最小为目标函数,设计了两种基于灰色预测理论的转子系统振动主动控制方案--灰色GM(1,1)预测优化控制方案和灰色Verhuslt预测优化控制方案.并将该两种方案分别应用于带电磁阻尼器转子轴承系统的转子振动主动控制中,通过数值仿真验证了两种控制方法的有效性,并对两种方法的控振效果进行了比较.

  • 标签: 转子系统 振动主动控制 灰色GM(1 1)预测优化控制 灰色Verhuslt预测优化控制
  • 简介:针对自治混沌系统,基于系统稳定性理论,通过设计合适的非线性反馈控制器,给出了普适的广义投影同步定理.定理中函数的选择可以为系统的线性或非线性函数,更具灵活性和普适性;文中理论还可以通过调整参数提高广义投影同步的速度.数值仿真进一步验证了本文理论的有效性和实用性.

  • 标签: 广义投影同步 自治混沌系统 非线性反馈 数值仿真
  • 简介:在受迫VanderPol振动系统的近似解的基础上,获得驱动系统的虚拟轨线.将虚拟轨线代入驱动一响应振动系统的近似误差方程,再用多尺度法求得同步时间关于反馈增益的分析表达式,并且将数值与分析结果进行比较表明:用该方法求得的同步时间与反馈增益的关系和数值模拟结果相当一致.这方法也适用于研究自激VanderPol振动系统.

  • 标签: 受迫Van der Pol振子 虚拟轨线 多尺度法 同步时间
  • 简介:针对日益受到关注的液体晃动问题,提出了一种基于浅水波理论的研究方案.该方案采用浅水波理论而非势流理论导出系统控制方程,并通过哈密顿体系表达;利用中心有限差分法和Stormer-Yerlet算法进行空间和时间离散;模拟了不同初值条件下的液体晃动情况并对比分析了影响系统非线性响应的主要因素.结果表明,基于浅水波理论能有效解决液体晃动问题;与Euler格式对比,Stormer-Verlet算法精度较高;除共振外对于系统非线性响应的影响容器初始位移比初始速度更显著;非共振情况一定条件下,充液容器运动过程中液体晃动能起到阻尼作用.

  • 标签: 液体晃动 浅水波理论 初值问题 数值模拟 非线性
  • 简介:基于数值方法,以弹簧摆为对象,讨论了不同的内共振关系对一类平方、立方非线性系统动力学行为的影响.结果表明,对1:1内共振的情况,两个模态的振动均可能发生在偏离原来平衡位置的新的平衡位置附近,即出现平衡位置飘移的现象.能量可以从低阶(摆动)模态传递到高阶(呼吸)模态,但不能从高阶(呼吸)模态传递到低阶(摆动)模态.然而对1:3内共振的情况,这种能量在两个模态之间的传递却非常弱.从仿真结果来看,对1:1和1:3内共振的情况,等幅的周期解是稳定的;但对1:2内共振的情况,出现的是调幅的周期运动即拍振,且拍频与初始条件有关.

  • 标签: 弹簧摆 内共振 能量传递 稳定性
  • 简介:随着列车运行速度的提高,高速客车横向稳定性一直是近年来研究的热点.建立9自由度半车数学模型,利用数值方法对该系统的横向稳定性与分岔问题进行了研究,得到车辆系统发生蛇行运动时的临界速度及分岔后各运动状态的转变过程.结果表明系统超过临界速度后会发生复杂的动力学行为,包括单周期、两周期、混沌运动等,并且由对称向不对称,最后再向对称运动转化.

  • 标签: 轮轨碰撞 分岔 混沌 蛇行运动
  • 简介:圆射流碎裂过程的理论研究对于发动机喷雾与燃烧科学研究至关重要,线性稳定性理论是对射流碎裂过程研究的一种重要方法.论述了粘性圆射流在不可压缩气体介质中的线性稳定性理论分析,应用液、气相的线性化纳维-斯托克斯量纲一控制方程组和量纲一化的线性运动学和动力学边界条件,采用对动量方程点乘哈密顿算子的方法,推导出了n阶量纲一色散准则关系式.

  • 标签: 线性稳定性理论 圆射流 n阶色散关系式 修正贝塞尔方程
  • 简介:考虑了剪滞翘曲应力自平衡条件、剪切变形和剪力滞后效应等因素的影响,本文提出了一种对宽翼薄壁T形梁动力学特性的分析方法.分析中为了准确反应T形梁翼板的动位移变化,三个广义动位移被引入,且以能量变分原理为基础建立了T形梁动力反应的控制微分方程和自然边界条件,据此对T形梁的动力反应特性进行了分析,揭示了T形梁桥动力反应的规律.算例中,对比了考虑和不考虑剪滞翘曲应力自平衡条件对T形梁动力反应的影响,结果显示考虑剪滞翘曲应力自平衡条件的计算方法与有限元数值解吻合更好.

  • 标签: T形梁 剪力滞后 自平衡条件 动力反应 能量变分原理
  • 简介:通过引入不同的对偶变量,将粘性流体的扰动问题化为具有良好结构特性的可解耦Hamilton系统.利用可解耦Hamilton系统微分形式与积分形式的等价性,导出了粘性流体扰动问题的Hamilton混合能变分原理,并建立了本征函数系之间的双正交关系.

  • 标签: 哈密顿体系 粘性流体 变分原理 双正交关系
  • 简介:采用Timoshenko梁修正理论研究了有梯度界面层双材料梁的振动问题,利用静力方程确定了有梯度界面层双材料梁的中性轴位置,在此基础上应用Timoshenko梁修正理论建立了有梯度界面层双材料梁的振动方程,求得其自振频率表达式及其在简谐荷载作用下强迫振动的解析解.讨论分析了梯度界面层高度等因素对有梯度界面层双材料梁的振动影响,并用有限元法验证了Timoshenko梁修正理论.通过实例计算,得到了梯度界面层高度等因素对有梯度界面层双材料梁振动特性有较大影响的结论.

  • 标签: TIMOSHENKO梁 梯度界面层 中性轴 振动
  • 简介:利用群论的方法研究系统的对称性,可以将对称系统分解为一系列互相独立的子系统,使系统的H2和H∞控制可以在低维子系统上设计实现,从而减少控制系统设计中的计算量,这一点对于大规模系统的控制尤其重要.简要介绍了利用系统对称性简化Lyapunov方程和Riccati方程的求解,以及计算控制系统的范数等几个例题,这些都是H2和H∞控制中常见的计算问题.

  • 标签: H2/H∞控制 群表示理论 对称系统 LYAPUNOV方程 RICCATI方程 应用