学科分类
/ 1
7 个结果
  • 简介:研究了具有有界耦合函数的不确定复杂动态网络的脉冲同步问题.根据脉冲控制的概念和脉冲微分方程的稳定性理论,我们利用一个灵活有效的脉冲控制实现了复杂动态网络的脉冲同步.最后,通过对混沌系统做网络节点的动态网络的数字模拟,验证了我们提出的脉冲控制方案的有效性和实用性.

  • 标签: 复杂网络 同步 脉冲控制
  • 简介:应用自适应脉冲控制策略实现输出耦合复杂网络的同步.通过构造Lyapunov泛函,设计合适的自适应脉冲控器,并利用脉冲微分方程理论,建立了网络的同步准则.该准则保证了动态网络渐进同步于任意指定的网络中的单独节点的状态.数值模拟表明所得控制器的有效性.

  • 标签: 复杂网络 同步 自适应控制 脉冲控制 输出耦合
  • 简介:根据分数阶系统的相关理论研究了一类分数阶复杂网络混沌系统的投影同步问题,给出了分数阶复杂网络以及分数阶时滞复杂网络系统实现投影同步的充分性条件,仿真结果表明了方法的正确性.

  • 标签: 投影同步 分数阶系统 复杂网络
  • 简介:研究了改进的Morris—Lecar(ML)神经元模型的放电节律模式和模式转化的峰峰间期(interspikeintervals,ISIs)分岔结构,通过调节模型中的两个重要参数μ和Vk,发现对于固定的μ,改变Vk,神经元呈现出从倍周期级联分岔到加周期分岔的复杂结构,放电模式从静息态转化为周期、混沌簇放电状态;若选取此分岔过程中的某一Vk值,对μ进行调节,呈现出的ISIs分岔结构在很大程度上取决于单个神经元的放电节律模式,且单个神经元处于混沌簇放电时,肛带来的分岔动力学行为较丰富.由于神经元能够通过动作电位对信息进行编码,所以我们推测,研究神经元的放电节律模式和动作电位的ISIs分岔结构能为理解神经信息编码机制提供线索.

  • 标签: 分岔 峰峰间期 神经编码
  • 简介:基于转子动力学、Hertz理论和非线性动力学理论,针对一端支座松动的滚动轴承-转子系统的运动特征,考虑了松动间隙的非线性情况,建立了系统的动力学方程.在对转子系统动力学方程进行数值积分之后,通过分叉图、庞加莱图、相图和关联维数等显示了转子系统随转速变化和松动间隙的扩展会出现复杂动力学现象,并且研究了滚动轴承-转子系统在支承松动时的分岔和混沌运动及其变化规律,得出了有工程价值的结论,这些结论可为该类故障的诊断提供参考.

  • 标签: 支座松动 混沌运动 故障诊断 动力学 滚动轴承-转子系统
  • 简介:采用面向对象技术对复杂机械系统动力模型元素进行了分析.根据其特点提出了支持动力学仿真建模平台的模型元素类体系结构,并对该平台关键技术--关联关系管理和子系统建模进行了探讨.最后应用上述技术开发出了仿真建模平台InteDyn,并以汽车整车模型和悬架模型为例证明了这些技术的可行性和有效性.

  • 标签: 复杂机械系统 动力学 建模 模型元素 面向对象
  • 简介:根据符号动力系统与真实动力学系统拓扑共轭的特性,本文提出动态标架分割法,把动力学系统的某时间变量序列转化成符号序列;运用Lemple-Ziv复杂度算法计算该符号序列的复杂度值,据此对动力学系统的复杂性进行分析,从而可以对动力学系统的性质进行定性地判断,以杜芬振子为例,数值模拟结果表明基于动态标架分割法计算得到的复杂度能够很好地描述系统的复杂性,并可定性地判断系统的性质。

  • 标签: 符号时间序列 动态标架分割法 Lemple-Ziv复杂度 动力学系统