学科分类
/ 1
9 个结果
  • 简介:非线性输出频率响应函数是由Volterra级数发展而来的频域概念,可方便在频域对非线性系统进行分析,它是频率的一维函数.本文主要介绍了利用NARMAX模型以及NOFRF对结构进行损伤检测的方法,并利用实验研究证实了该损伤检测方法的可行性.另外,由于系统非线性特性可用来做结构损伤检测,且具有对系统状态比较敏感的优点,而基于NOFRF的损伤检测方法是利用非线性方法来分析系统的状态,该方法提取出的特征属于非线性特征,所以该损伤检测方法可以用来做结构损伤检测,且具有对系统状态比较敏感的优点.

  • 标签: VOLTERRA级数 NARMAX模型 非线性输出频率响应函数 广义频率响应函数 损伤检测
  • 简介:利用实验方法研究粘弹性传动带的非线性振动.实验装置中的粘弹性传动带是同步带,通过伺服电机进行驱动,当电动机转速在某一恒定值上下变动时,带中的张紧力也会呈现周期性变化.通过改变传动带中张紧力的频率和幅值,得到了粘弹性传动带的频率响应曲线和周期运动、倍周期运动以及混沌运动的波形图和相图.

  • 标签: 混沌运动 非线性振动 粘弹性传动带
  • 简介:基于两种齿轮碰撞模型进行数值和实验的研究比较:(1)含啮合间隙的刚性碰撞齿轮系统,假设轮齿间的碰撞在瞬间完成,边界为刚性;(2)含弹性约束和啮合间隙的弹性碰撞齿轮系统,空隙范围内部齿轮自由运动,边界为弹性,用无质量弹簧一阻尼器描述.文中主要通过实验研究对两种齿轮接触模型的动力学响应进行分析比较:首先用实验结果验证数值仿真的正确性,之后对两种不同的齿轮传动系统在不同参数下的实验数据和仿真结果分别进行比较,并对两种不同的齿轮传动系统所展现的复杂动力学现象进行分析.

  • 标签: 齿轮传动 碰撞 实验 频谱
  • 简介:对构造的单边碰撞悬臂梁系统进行实验的定性研究,在基础激励实验中,变换多次激励频率,通过加速度传感器测量悬臂梁测点的响应信号,并通过力传感器测量得到限位器与柔性悬臂梁之间的碰撞力.通过Matlab软件对实测响应的时、频域分析处理,观察到系统复杂的周期、概周期、混沌等多种运动形式,并发现其中运动形式变化的区间存在突变.尝试对实验时域数据计算最大Lyapunov指数,以进一步验证其中混沌的存在,进一步发现了混沌响应下末端加速度响应与碰撞力的传递函数具有频响函数特征.实验研究体现了非线性动力学现象,也对分析应用混沌运动的实验结果提供了一个新视角.

  • 标签: 非线性振动 悬臂梁 单边碰撞 周期运动 混沌运动
  • 简介:随着行车速度与交通量不断增加,荷载不断加重,桥梁的移动荷载响应越来越得到人们的重视.考虑移动车辆的惯性效应与桥梁的阻尼效应时,需要把车辆荷载简化为移动质量进行研究,这时得到的控制方程是变系数偏微分方程,在数学上通常难以精确求解.经分离变量与模态叠加后,化为变系数常微分方程组.本文利用WKB法,得到了近似的动力学响应,并与数值解、移动常力、Inglis解进行了比较.

  • 标签: 简支梁 移动质量 WKB法
  • 简介:为了研究零质量射流的作用机理和流场结构,发展了一套面向二维零质量射流的非结构化动网格模拟方法:采用控制容积法,引入动网格控制方程,并与任意曲线坐标系下矩阵形式的时均可压缩N-S方程组联合求解,迭代过程中采用弹性类推法进行动态网格更新.基于此方法,对二维零质量射流进行数值模拟,对计算获得的流场涡线和流线分布进行了分析和讨论,并与其他学者类似算例进行了比较,表明该方法能够合理揭示零质量射流的流场结构和作用机理,可实现二维零质量射流的数值模拟.

  • 标签: 动网格 零质量射流 非定常流动 数值模拟
  • 简介:为了获得移动质量沿梁匀速运动的系统动态响应,建立了时空有限元数值求解模型.考虑移动质量惯性项,得到移动质量-梁时变系统的动力学方程.应用时空有限元法.得到了移动集中质量作用下Ber-noulli-Euler梁离散单元的质量矩阵、刚度矩阵.与Newmark-β法、Wilson-θ法计算结果进行比较,时空有限元法计算梁的动态响应的精度更高.

  • 标签: 移动质量 时空有限元法 数值分析
  • 简介:本文对带质量块的微型双稳态压电板进行动力学分析.以中心固支四边自由的带质量块微型压电层合板为研究对象,应用应变梯度理论考虑尺寸效应,综合考虑力、电、热耦合作用,采用VonKarman大变形理论,运用Hamilton原理建立非线性动力学方程.利用特征值法探究不同内禀长度和不同压电铺设面积的情况下,温度和电压对其固有频率和稳定性的影响.其次研究了不同外激励下系统的非线性动力学响应.通过本文的研究发现,随着压电铺设面积的增大,力、电、热耦合效应增强,对系统的稳定性影响越显著;通过研究温度和电压对系统振动幅值的影响为振动控制提供了理论依据.同时发现尺寸效应对结构刚度影响较大,验证了微型结构考虑尺度效应的必要性.本文的研究结果会为今后的工程实际应用提供一定的理论参考价值.

  • 标签: 双稳态板 应变梯度 力-电-热耦合 特征值法