简介:对含Karnopp摩擦的柔性滑移铰系统进行动力学建模和仿真.将滑移铰中的滑块视为柔性体,滑道视为刚性接触面,考虑滑道与滑块之间的间隙.由于柔性滑块与滑道的接触状态和摩擦情况比较复杂,采用有限元方法建立了柔性滑块的力学模型,基于罚函数方法建立含Karnopp摩擦柔性滑移铰接触力模型,通过试算迭代法判断柔性滑块各节点的接触状态,基于KED方法和Newmark方法给出了含该滑移铰机械系统动力学方程的数值算法.最后,以含Karnopp摩擦的柔性滑移铰和驱动摆杆构成的机械系统为例进行动力学仿真,分析了其动力学特性,验证了本文给出的方法的有效性.
简介:为了协调高速铁道车辆的运动稳定性与曲线通过性能之间的矛盾,本文采用多目标优化方法对一种高速铁道车辆的关键悬挂参数进行了优化处理.采用多体动力学技术建立了某型高速铁道车辆62个自由度的动力学模型,模型考虑了轮轨接触几何非线性、轮轨蠕滑非线性和阻尼非线性等.采用ADAMS—Matlab联合仿真对车辆悬挂系统进行参数化改造,使弹簧刚度和阻尼系数均可调.采用基于遗传算法的多目标优化方法对悬挂参数进行优化,使车辆模型能同时满足3种动力学指标.对比优化前后模型的动力学性能可以发现:模型的运动稳定性和曲线通过性能得到显著提高,虽然运行平稳性有小幅降低,但仍能保持在优良的工作状态.
简介:提出了基于模糊逻辑控制扭矩分配策略,建立了各功能组件模型.并利用ADVISOR2002仿真平台。完成了该模糊逻辑扭矩控制策略和电气辅助控制策略仿真比较.结果表明,本文提出的模糊逻辑控制策略对提高混合动力汽车的动力性和燃油经济性。改善尾气的排放有明显的作用.
简介:蜂窝夹层结构因其良好的力学特性,在众多工程领域具有非常广泛的应用.本文建立了悬臂边界条件下,蜂窝夹层板的动力学模型并研究其非线性动力学行为.选取文献中更加接近实体有限元解的等效弹性参数公式对蜂窝芯层进行等效简化,得到六角形蜂窝芯的等效弹性参数.基于Reddy高阶剪切变形理论,应用Hamilton原理建立悬臂式蜂窝夹层板在受到面内激励和横向激励联合作用下的偏微分运动方程.然后利用Galerkin方法得到两自由度非自治常微分形式运动方程.在此基础上,通过对悬臂式蜂窝夹层板进行数值模拟分析系统的非线性动力学.结果表明面内激励和横向激励对系统的动力学特性有着重要影响,在不同激励作用下系统会出现周期运动、概周期运动以及混沌运动等复杂的非线性动力学响应.
简介:主要介绍一种基于Modelica语言的泵车臂架系统多领域耦合动力学仿真建模方法.泵车臂架系统是典型的机械、液压、控制等多领域耦合系统,在其频繁的启动、制动过程中,变幅机构和液压元件均承受着强烈的冲击和振动.传统的单一领域动力学建模方法很难全面反映泵车臂架系统的整体动力学性能,然而通过几种仿真工具进行联合仿真的方法亦难免存在建模效率、仿真速度等方面的问题.针对以上不足,以某型泵车为研究对象,提供一种基于多领域统一建模语言Modelica的机械、液压及控制等多场耦合的泵车臂架系统动力学建模方法,并对其工作过程进行了动态仿真.该模型具有模块化、层次化、规范化和参数化,以及仿真模型互操作性和重用性强的特点.
简介:研究了横向气动载荷和参数激励联合作用下复合材料悬臂外伸矩形板在伸出过程中的非线性动力学问题.根据Reddy的高阶剪切层合板理论,应用Hamilton原理建立了外伸板在横向气动力和参数激励作用下的非线性动力学方程,其中横向气动力采用一阶活塞气动力.然后应用Galerkin方法对系统偏微分形式的非线性方程进行离散,得到了一组时变系数的非线性动力学方程.在此方程的基础上,对复合材料悬臂外伸板进行了数值模拟分析,讨论了外伸速度对悬臂外伸板非线性动力学特性的影响.
简介:提出了一种快速计算变截面铁木辛柯梁横向振动特性的方法.基于铁木辛柯梁理论建立的变截面梁的横向振动方程,其梁的截面参数如有效剪切面积、密度、弯曲刚度、转动惯量等沿梁轴线连续或非连续变化;首先将变截面梁等效为多段均匀阶梯梁;然后基于相邻两段连接处的位移(位移、转角)和力(弯矩、剪力)连续条件,建立相邻两段模态函数间相互关系,并递推出首段段与末段模态函数相互关系,利用边界条件得到相应特征方程,使用Newton—Raphson方法计算其固有频率;最后针对梁常见边界条件,得到计算变截面铁木辛柯梁横向振动固有频率特征方程的具体形式.用该方法计算-变截面梁在常见边界条件下前三阶固有频率.将计算结果同有限元计算结果进行比较,验证所提方法的有效性.然后与欧拉-伯努利梁计算结果比较,验证了本文方法求解短粗梁固有频率具有更好适用性.
简介:对具有重根的广义特征值问题,采用基于快速Fourier变换的方法进行求解,实现重根辨识.文章中采用多次单点初始激励的方式,仿真计算测点上的自由振动响应,对响应进行快速Fourier变换后得到频域数据.而后对频域数据分析,得到固有频率和多组测点振型数据.根据单频和重频处的振型特性,引入振型的余弦相似度为判别参数,辨识重根.数值算例表明,该方法可有效实现重根辨识,同时特征值的计算能达到较高精度.