学科分类
/ 1
4 个结果
  • 简介:研究了一类抽象耦合非线性梁方程组在Hilbert空间中的初值问题.首先运用Galerkin方法对两个方程进行一定的处理,然后证明收敛性,最后证明了上述非线性梁方程组的整体弱解的存在性.

  • 标签: 非线性 耦合 梁方程 整体解
  • 简介:运用Galerkin方法讨论了一类具有记忆项的耦合非线性抽象方程组的初值问题,根据方程组的特点,巧妙地对两个方程进行相加,并结合微积分的性质得到了所要的结果,然后研究收敛性,最后证明了方程组整体弱解的存在性.

  • 标签: 记忆项 耦合 非线性 抽象方程组 整体解
  • 简介:发展型偏微分方程混和有限元的求解往往需要变动的维数,不符合传递辛矩阵群固定维数的限制.本文按变分法的进一步发展的思路,推导了运用虚功原理解决不同维数传递辛矩阵群连接的原理.数值例题表明了方法的有效性.

  • 标签: 发展型偏微分方程 混和有限元积分 传递辛矩阵 不同维数的连接
  • 简介:由于数学模型在整合实验数据和分析基因调控网络的动力学方面的独特优势,近年来数学模型在生物节律研究领域越来越受到人们的重视.哺乳动物昼夜节律是由位于视觉交叉上颌的神经元控制的,其中的每个神经元都含有一个内在的生物钟,关键的问题是具有广泛周期分布的神经元振子之间如何达到相同步.在分子水平上结合数学方法中的网络分析与控制的观点构建生物网络,然后用非线性动力学的相关知识进行理论分析和数值模拟,是研究生命现象的一个有效途径.本文从系统生物学的研究思路,对生物钟的数学建模及其动力学研究做了一个综述,并对其今后的研究热点进行了展望.

  • 标签: 昼夜节律 生物钟 同步 振子