简介:研究了因与外部接触而发生局部非线性的动力学系统.基于NOFRF理论,对系统中出现的各次谐波分量进行研究,推导出了该类系统各自由度各阶谐波分量的表达式.证明了该类动力学系统中各自由度之间高次谐波分量的与原线性系统动柔度矩阵的相关元素成正比关系,并据此提出了一种简洁的局部非线性位置的辨识方法.采用这种方法,可以通过结构体中任意两个部位之间的高次谐波分量的比值关系,经过一次谐波激励而辨识出非线性的具体位置.对一个多自由度系统进行数值仿真,验证了该方法的有效性.
简介:详细介绍了六种典型的滞后非线性模型,包括:干摩擦理想模型、双线性模型、Davidenkov模型、Boue-Wen模型、迹法模型及Bingham模型。首先说明了这些模型的由来、表达式及原理,然后分析了这些模型的优缺点和应用范围。此外,还对各种典型模型的改进情况和最新的研究进展进行了较详细的综述,最后总结了滞后非线性模型的研究现状及将来的发展趋势。
简介:研究了本质线性非完整系统的Hamilton原理,分别应用与不应用Appell—Chetaev条件证明了本质线性非完整系统Hamilton变分泛函取驻值的充分必要条件.结果表明,在本质线性非完整系统中,Hamilton作用量是稳定的作用量,与完整系统的Hamilton原理具有相同的形式与本质;而且由Hamilton原理得到的运动方程不会导致任何力学与数学上的矛盾.最后给出了Hamilton原理向本质非线性非完整系统推广时产生数学与力学上不合理的根本原因。
简介:从非线性动力学角度分析了Nakamura模型中各参数对周期振动的影响,揭示了人行桥侧振过程中各因素:如桥上行人重量,同步人群的比例,行人同步与桥自振频率之间的关系描述函数等如何影响桥侧振的振幅.理论分析和实测数据发现:桥侧向振幅过大时,描述行人产生的侧向力与桥频率关系的函数不一定为1.0,且完全有可能远离1.0.
简介:针对含间隙的两自由度弹簧-质量分段振动系统的非线性模态开展了研究.首先,解析确定了分段保守自治系统发生同相和反相模态运动的初始位移,并采用加权平均方法确定了分段振动系统的模态频率,及其在位形空间模态曲线.然后,采用数值方法求解了系统的非线性模态曲线和模态频率,与本文获得的解析模态频率比较,说明本文的结果较等效模态频率有更好的精度.研究结果表明:在一定的参数条件下,系统的非线性模态个数会高于系统的自由度数目,系统可能发生内共振,而产生多余模态.多余模态运动是两振子同向振动中含有异向振动,说明多余模态是在同相模态运动和反相模态运动之间转换的模态.