学科分类
/ 1
14 个结果
  • 简介:针对RockingBlock中的线碰撞问题,首先采用离散化思想将线碰撞问题离散为多点碰撞系统,而后基于LZB方法对所建多点碰撞系统进行动力学建模.仿真结果表明随着离散点数的增加,基于LZB方法的多点碰撞模型能够很好地刻画RockingBlock中的相关线碰撞问题,且精度与离散程度紧密相关.

  • 标签: 线碰撞 多点碰撞 非光滑动力学 ROCKING Block
  • 简介:基于模态叠加理论,通过桥梁多个截面处加速度响应数据,计算得到桥梁受移动荷载作用下的模态加速度.根据d'Alembertian原理,桥梁截面任意时刻的动弯矩可看作是任意时刻受惯性分布力和移动荷载作用下的静弯矩.利用影响线,建立起移动荷载与弯矩之间的关系,提出了一种利用弯矩影响线识别移动荷载的方法.算例表明,当荷载只有一个时,可由单点弯矩直接识别,当有多个移动荷载时,可基于多个截面的弯矩数据,利用最小二乘法可以有效的识别出任意时刻作用于桥梁上的移动荷载值.该方法避免了求解桥梁的动力学微分方程,识别精度高且过程简单,适合于工程应用.

  • 标签: 荷载识别 影响线 移动荷载 模态叠加原理
  • 简介:线弹性静力学中有最小势能原理和最小余能原理,但只适用于物体或结构在给定约束条件下处于稳定平衡状态的情况,而在一般情况下动力学问题不可能存在稳定平衡状态,因此在动力学领域中是否存在最小势能原理值得认真考虑.本文对动力学问题中存在最小势能原理的可能性进行了探讨,并以摆脱了"平衡态"和"稳定态"的限制的最小功耗原理为理论基础,导出了线弹性动力学中的最小势能原理和最小余能原理.给出了计算实例,结果正确.因此在线弹性动力学中存在瞬时意义下的最小势能原理和最小余能原理.但其含义与静力学中的最小势能原理和最小余能原理并不相同.其主要区别在于:动力学中的原理适用于不稳定过程之任一瞬时,其"最小"是指"当时(即该瞬时)所有可能值的最小".而静力学中的最小势能原理则只适用于稳定平衡状态,其"最小"是指系统从不稳定最后达到稳定平衡的整个过程中所有"真实值中的最小".即前者是"当时的最小",后者则是"全过程中的最小".这两类变分原理可成为线弹性动力学中各种变分直接解法的理论基础.

  • 标签: 最小势能原理 最小余能原理 弹性动力学 动力学问题 平衡状态 理论基础
  • 简介:研究系统存在不确定性的大柔性飞行器的姿态跟踪控制问题.针对高阶大柔性飞行器模型,使用平衡实现方法对其降阶,并通过奇异值对比分析系统降阶前后特性.基于降阶模型,设计LQR-PI控制器作为基线控制器.考虑不确定性,利用李雅普诺夫稳定性理论设计模型参考自适应控制器,并对比两种方法的控制效果.仿真结果显示,所提方案对包含不确定性的系统具有较好的控制效果,能使系统完成期望的姿态跟踪目标.

  • 标签: 大柔性飞行器 平衡实现 最优控制 模型参考自适应控制
  • 简介:利用哈密顿系统生成函数的性质求解LQ终端控制问题,并给出了相应的数值方法.针对现有文献中此类问题的最优控制律在终端时刻存在无穷大增益的情况,利用第二类生成函数的性质求解哈密顿系统两端边值问题并构造了无终端奇异性的时变最优控制律.然后根据哈密顿系统状态的正则变换性质导出了求解生成函数系数矩阵微分方程和计算时变控制律的矩阵递推格式.最后用所提出的方法研究了以能量均衡消耗为约束条件的卫星编队重构问题,设计了符合要求的闭环控制系统并给出了数值仿真结果.

  • 标签: 最优控制 生成函数 哈密顿系统 编队重构 卫星
  • 简介:研究了Lufie广义系统基于状态观测器的控制器设计问题.通过使用Lyapunov稳定性理论,线性矩阵不等式方法,分别给出了状态反馈控制器和观测器的设计方法,并建立了分离原理,进而得到了基于观测器的控制器设计方法.所得结论对广义系统理论本身的发展和实际应用都有非常重要的意义.最后给出了仿真实例.

  • 标签: Lurie广义系统(LDS) 观测器 控制器 LYAPUNOV函数 线性矩阵不等式(LMI)
  • 简介:利用遗传算法研究了一类切换规则只由状态决定的切换系统的控制器优化设计问题.首先由线性矩阵不等式(LMI)来设计切换控制器,然后应用遗传算法来对切换规则进行优化.优化后的切换规则不仅可保证闭环系统渐近稳定,而且具有良好的动态性能.将本文提出的方法应用在小车倒立摆控制系统上,仿真结果表明了本文设计方法的有效性.

  • 标签: 切换系统 遗传算法 优化设计 动态性能 倒立摆
  • 简介:为了设计结构复杂、性能优越的多涡卷混沌系统,采用理论分析和数值仿真的方法,通过设计一个连续非线性函数,建立了三阶Chua系统的单方向与网格多涡卷吸引子模型.在Matlab平台上,通过吸引子相图、最大Lyapunov指数、分岔图和Poincaré截面等方法,分析了多涡卷Chua混沌系统的动力学特性.研究结果表明,多涡卷Chua混沌吸引子具有丰富的动力学特性,仿真结果与理论分析一致,表明了多涡卷Chua混沌系统设计方法的有效性和设计模型的正确性.

  • 标签: 混沌 多涡卷吸引子 CHUA电路 性能分析
  • 简介:针对大展弦比机翼水平弯曲模态参与耦合颤振问题,首先用考虑几何非线性的颤振分析方法研究了某大展弦比机翼的颤振特性,结果表明水平一弯模态参与耦合降低了机翼传统模式的线性颤振速度;然后研究了复合材料的铺层主刚度方向角对机翼非线性振动特性和颤振特性的影响规律,提出了大展弦比机翼非线性颤振剪裁设计的新方法.结果表明主刚度方向角的变化主要引起了水平一弯模态振型的改变,一般表现为主刚度方向角从机翼后梁向后缘偏转,该阶模态的相对扭转振型节线位置向前缘移动;反之,该节线位置后移.进一步非线性颤振分析,发现水平一弯模态振型的变化引起了该阶模态参与耦合颤振速度的明显改变,主要表现为该颤振型的颤振速度随该阶模态的相对扭转振型节线位置前移量的增加而增大.通过两个算例验证了结论的正确性.

  • 标签: 大展弦比 几何非线性 颤振 气动弹性剪裁 节线
  • 简介:提出了一个馈能式主动控制系统的设计方案,首先给出了一种馈能式主动控制的电机作动器的驱动方式,使得作动器能够在三种工作模式下进行功能切换.其次,分析了三种模式的工作时间比与能量平衡之间的关系,给出了能够实现能量平衡的基本条件,并得到了系统达到能量平衡的条件.最后,通过一个馈能式主动控制系统设计的算例验证了方法的可行性.仿真结果表明,该主动控制系统能够有效降低振动激励的干扰,并且能够达到能量平衡,即不需要外部的能量供给.

  • 标签: 能量回馈 主动控制 能量平衡 电机作动器
  • 简介:为研究权衡结构刚度与低阶振动频率的飞行器升力面最优结构设计,提出两种多目标拓扑优化方案(约束法、结合约束法与评价函数法).基于变密度方法,在约束法方案中将多目标优化转化为设定参考点位移约束和低阶振动频率约束下,求解结构质量最小化的优化问题.在结合约束法与评价函数法方案中,定义组合柔度指数为评价函数(结构柔度与振动频率的函数),将多目标优化转化为设定低阶振动频率约束和体积分数约束下,求解结构最小组合柔度指数的优化问题.结果表明两种方案的优化结果具有一定的相似性,各有所长.优化设计不仅减轻了升力面结构重量,而且提高了结构的一、二阶振动频率.

  • 标签: 多目标 拓扑优化 约束法 评价函数法
  • 简介:在辛体系下利用精细积分对矩形波导纵向排列介质层PGB结构进行分析的基础之上,用响应面方法对滤波器进行了优化设计.采用棱单元对波导的横截面进行离散,然后导向哈密顿体系,运用基于黎卡提微分方程的精细积分求出一段介质层和一段空气层的出口刚度阵,再将两区段合并得到一个周期段的出口刚度阵,从而可对所有周期进行合并以对问题求解.在分析的基础上建立了滤波器的优化设计模型,利用响应面方法将目标函数和约束函数近似显式化,运用二次规划法对优化模型进行求解,得到了滤波性能最优的设计参数.算例表明本文方法是可行有效的.

  • 标签: 波导 PBG结构 滤波器 精细积分 HAMILTON体系 响应面方法
  • 简介:建立随机风作用下高速列车动力学参数的可靠性优化设计方法.首先考虑自然风的脉动特性,采用Cooper理论和谐波叠加法模拟随车移动点的脉动风速,给出随机风作用下高速列车非定常气动载荷的计算方法.然后建立高速列车车辆系统动力学模型,计算高速列车的运行安全性,并基于可靠性理论,给出随机风作用下高速列车失效概率的计算方法.在此基础上,以高速列车动力学参数为优化设计变量,以失效概率和轮轴横向力为优化目标,采用多目标遗传算法NSGA—II进行动力学参数的自动寻优,建立随机风作用下高速列车动力学参数的可靠性优化设计模型.经可靠性优化计算,高速列车的失效概率由原始的0.4884降低为0.1406,轮轴横向力由原始的45.13kN降低为43.01kN.通过优化高速列车动力学参数可以显著改善随机风作用下高速列车的运行安全性.

  • 标签: 随机风 可靠性优化 动力学参数 失效概率 多目标遗传算法
  • 简介:以一种平面三自由度可控挖掘机构为例,运用拉格朗日方法建立了机构的刚体动力学模型,求解得到了各主动杆的系统广义力;进而针对其半闭环控制系统的控制策略进行研究,基于机构驱动元件.交流控制电机及其驱动器的数学模型,运用模糊算法设计了一种模糊-PID双模控制器并对其进行仿真分析.结果表明:基于模糊算法的控制器在超调量、调节时间、上升时间和抗干扰能力等方面均具有较好性能,满足系统的控制要求.

  • 标签: 多自由度可控机构 挖掘机 动力学 模糊-PID控制