学科分类
/ 1
9 个结果
  • 简介:研究了受扭转弹簧约束的简支输流管道的固有频率特性和静态失稳临界流速.根据梁模型横向弯曲振动模态函数,由部支承和约束边界条件得到了其模态函数的一般表达式.根据动力方程的特征方程,具体分析了约束弹性刚度、流体压强、流速和管截面轴向力等参数对管道固有频率特性和静态失稳临界流速的影响.数值分析表明,约束弹性刚度的增大使管道的固有频率和失稳临界流速明显提高;流体流速、压强和管截面受到的轴向压力的增加使管道的固有频率和失稳临界流速降低.当管道的固有频率和失稳临界流速较低时,可以通过增加部约束的方法来提高.

  • 标签: 输流管道 简支 弹性约束 固有频率 临界流速
  • 简介:使用有限元传递矩阵法分析了某大长径比弹的固有振动特性,成功求得了其固有振动频率和振型函数,计算结果得到试验验证.该方法兼备有限元法建模方便、应用范围广和传递矩阵法应用灵活、矩阵阶次低、计算速度快的优点,易于分析复杂变截面结构弹的振动特性,并且可直接利用商业有限元软件得到该方法仿真所必需的质量矩阵和刚度矩阵.

  • 标签: 大长径比弹箭 固有振动特性 有限元传递矩阵法
  • 简介:Pre-Botzinger复合体中兴奋性神经元节律性放电与呼吸节律的产生关系密切.泄漏电流对神经元放电具有重要的调节作用.本文利用双参数分岔分析和快慢变量分离等方法,研究了泄漏电流对耦合神经元同步模式及其转迁机制的影响.结果表明,在不同初始条件下,当泄漏电导改变时耦合神经元分别表现为同相“fold/homochnic”型、“subHopf/homoclinic”型和反相“fold/foldcycle”型和“subHopf/foldcycle”型放电.本文的研究为进一步探索呼吸节律的产生机制提供了一些见解.

  • 标签: 簇放电 双参数分岔 快慢变量分离 pre—BiStzinger复合体 呼吸节律
  • 简介:利用加性掩盖和函数调制种混沌加密方式对模拟信号进行加密,分别从幅值和频率方面分析加性掩盖方式和函数调制方式,对比种加密方式加密效果,了解种加密方式的差异.计算结果表明:函数调制方式在幅值和频率的范围上都好于加性掩盖方式的幅值和频率范围,函数调制方式比加性掩盖方式更具安全性.

  • 标签: 混沌加密 加性掩盖 函数调制 模拟信号
  • 简介:建立了自由度点碰撞振动系统的动力学模型,给出了碰撞振动系统产生粘滞的条件,分析了系统存在的粘滞运动,采用打靶法,利用变步长逐次迭代逼近的方法求解系统的不稳定的周期碰撞运动,即Poincare截面上的不动点,通过对自由度点碰撞振动系统进行数值模拟显示了系统在一定参数条件下存在周期倍化分叉和Hopf分叉,同时通过数值模拟的方法得到了以自由度点碰撞振动系统Poincare截面上的不变圈表示的拟周期响应,并进一步分析了随着分岔参数的变化,自由度点碰撞振动系统周期运动经拟周期分叉和周期倍化分叉向混沌的演化路径。

  • 标签: 碰撞振动 两点碰撞 周期运动 POINCARE映射 分叉 混沌
  • 简介:基于种齿轮碰撞模型进行数值和实验的研究比较:(1)含啮合间隙的刚性碰撞齿轮系统,假设轮齿间的碰撞在瞬间完成,边界为刚性;(2)含弹性约束和啮合间隙的弹性碰撞齿轮系统,空隙范围内部齿轮自由运动,边界为弹性,用无质量弹簧一阻尼器描述.文中主要通过实验研究对种齿轮接触模型的动力学响应进行分析比较:首先用实验结果验证数值仿真的正确性,之后对种不同的齿轮传动系统在不同参数下的实验数据和仿真结果分别进行比较,并对种不同的齿轮传动系统所展现的复杂动力学现象进行分析.

  • 标签: 齿轮传动 碰撞 实验 频谱
  • 简介:用直接积分法计算个耦合VanderPol振子系统的一阶近似守恒量,将个耦合VanderPol振子系统看成是未受微扰系统与微扰项的迭加,先通过坐标变换将未受微扰系统解耦,并对解耦系统的3种可能状态进行讨论,得到未受微扰系统的13个精确守恒量,再考虑微扰项对精确守恒量的影响,运用一阶近似守恒量的性质,得到1个稳定的一阶近似守恒量.另外,由13个精确守恒量直接得到13个平凡的一阶近似守恒量.

  • 标签: VAN der Pol振子系统 精确守恒量 一阶近似守恒量
  • 简介:为全面了解和准确预测质点动力学系统运动特性.本文以具有固定边界的质点动力学系统为例,构建了用于研究双自由度质点运动系统的余量谐波平衡解程序.解程序融合了谐波平衡与同伦方法优势,其高阶近似仅依赖于初始谐波近似,不需要根据前一阶近似进行调整.研究结果表明:本文给出的2-阶近似频率比已有的方法结果更加精确,相对误差不同程度减小,相应的近似响应与数值解更加吻合.因此,余量谐波平衡方法可广泛应用于其它质点动力学问题研究中.

  • 标签: 双自由度振动系统 余量谐波平衡 高阶近似 频率响应
  • 简介:一个可调节速度的皮带驱动的干摩擦振子系统,设其干摩擦力大小是常值且个激励频率是谐调的,本文对这个简单的力学模型进行了研究,分析了Filippov系统中可能出现的四种余维-1sliding分岔并给出数值模拟.分析表明:该系统具有极其丰富的sliding分叉现象,较小的激励频率易引起非光滑分岔现象.

  • 标签: 非光滑系统 余维-1sliding分岔 Filippov系统