简介:当前主流的运动目标检测方法存在计算量大、计算速度慢和无法实时检测等问题。本文以室外场景下的视频作为研究对象,在特征提取方面利用HOG特征和颜色特征相结合的特征融合方法,使用主成分分析法对特征维度进行降维,克服了单特征描述能力不全面的问题和多个特征数据量大的问题;在分类器设计方面,本文使用经过调优结构后的BP神经网络,克服了模式识别检测时间长的问题。实验结果表明,该算法相对于当前主流的HOG+SVM算法,在INRIA运动目标数据库上对运动目标的检测率达到92%,且速度较快。
简介:针对车道线检测,基于图像白平衡算法和灰度直方图,自适应地提取出感兴趣区域,并自适应确定Canny边缘检测算法的高低阈值。通过对概率霍夫变换得到的直线点集进行RANSAC拟合,满足了在不同光照条件下的自适应车道线检测,并基于英伟达JetsonTK1嵌入式开发板结合开源GUI库Qt,使用其QtQuick开发出一套车道线检测系统。
基于神经网络的运动目标检测算法研究
一种照度自适应车道检测算法及多核平台实现