学科分类
/ 1
2 个结果
  • 简介:针对.1:业废水处理系统的时变性、非线性、复杂性和不确定性,利用废水处理监控系统取得表征废水水质的各项指标,构建基于BP算法的四层模糊神经网络模型。该网络模型仿真实际废水处理过程的结果表明,模糊神经网络具有较强的学习能力;其较BP网络对样本数据的仿真误差较小,平均相对误差仅为1.5%,为实现废水处理的自动控制提供可行途径。

  • 标签: 模糊神经网络 废水处理 预测模型
  • 简介:基于提高工业废水处理自动化程度、保证出水水质的考虑,通过正交实验法获得了用于FNN模型训练和测试的样本数据,并建立了相应的FNN预测和控制模型;结合模糊C均值聚类和混合算法完成网络的结构辨识和参数辨识,仿真结果表明,预测模型具有很好的学习能力和泛化能力,而测试数据的相对误差范围为1.2%~8%;建立好的预测控制模型与MCGS组态软件结合应用于实验室的造纸废水处理控制,改变原水COD和进水流量的大小,控制系统会自动计算出该时刻的加药量,其出水CODcr维持在400mg/L左右,同人工恒定加药量相比平均相对误差小很多,只有1.98%,结果表明MCGS和控制算法结合可以有效控制废水处理过程。

  • 标签: 模糊神经网络 工业废水处理 预测控制