简介:海底沉积物中稀土元素的分布特征受很多影响因子的影响,很难定量分析.北部湾沉积物稀土元素(ΣREE)与物源、水动力、沉积物粒度和粘土矿物百分比等关系定性分析显示,本区的ΣREE的物源主要由陆源岩石控制,弱水动力和细粒度都对应较高含量的ΣREE.结合北部湾海底沉积物的位置、砾石含量、砂含量、粉砂含量、粘土含量和粘土矿物含量训练出来的BP神经在控制变量的情况下定量分析它们与ΣREE的关系,获得单个影响因子与ΣREE的关系曲线.这些关系曲线揭示了北部湾沉积物中稀土元素与各影响因子的联系,所获得的结果与定性分析的结果基本一致,该方法能够通过自主学习,自动判断并定量计算,有助于识别每一个因子对稀土元素含量影响的大小,是如何控制ΣREE的分布,从而根据曲线的变化规律结合实际情况去推断区域的环境变化及地质演变,对稀土元素的富集和分散提供有益的理论指导.
简介:常规的时间一空间域和频率一空间域预测滤波方法假设地震记录由地震信号和随机噪声两部分构成,即所谓的加噪声模型,但是,在对随机噪声进行估算时,又假设随机噪声可以通过预测误差滤波器由地震记录中进行预测,即所谓的源噪声模型。这种前后不一致的噪声模型降低了该类方法的去噪能力和保幅性能。为此,本文提出了一种基于反演的时空域随机噪声衰减方法。它首先从地震数据中估算预测滤波算子,该算子表征了地震信号的可预测性,自适应地描述了地震信号的空间结构。在得到预测误差算子之后,将该算子作为正则化约束引入到地震信号反演系统,由含有随机噪声的地震数据直接反演地震信号。不同于常规随机噪声衰减方法,该方法将随机噪声衰减问题归结为正则化约束下的地震信号反演问题,克服了常规方法噪声模型的不一致性问题。我们采用模型数据和实际数据进行了实验分析,并与常规方法进行了效果对比。实验结果表明:与常规方法相比,本文方法在噪声压制的同时,没有对有效信号产生明显伤害,具有更好的振幅保持能力。