简介:针对信息质量评估系统中各环节影响因素的评估问题,提出了一种基于自适应模糊神经网络(FNN)的信息汇聚质量评估方法,从汇聚结果满足用户需求的角度判断信息汇聚质量的优劣。依据用户体验满意度调查数据,结合神经网络的自主学习与模糊控制的模糊推理能力,提出了该方法,并将生成的TS型模糊推理系统作为汇聚质量评估参考模型。试验结果表明,该方法预测汇聚质量可反映人工专家经验。
简介:在铁路货运电子商务系统中,预订车票登录界面验证码图像中字符,提出了一种基于卷积神经网络(CNN)的铁路货运验证码识别方法.先对验证码图像进行预处理得到单个字符,再对单字符图像数据建立CNN模型进行迭代训练.该方法针对铁路货运验证码图像特征,图像字符分割正确率接近100%,单个验证码字符正确识别率达98%以上,单张验证码图像识别率接近93%.试验表明,该方法对铁路货运验证码识别率较高,可应用于验证码的自动识别.
基于自适应模糊神经网络的信息汇聚质量评估方法
基于卷积神经网络的铁路货运网站验证码识别