简介:摘要针对教与学算法(TLBO)后期收敛速度较慢并且容易陷入局部最优的问题,研究一种改进的TLBO。为提高种群多样性,降低陷入局部最优的可能性,采用多教师分班教学的策略并采用锦标赛选择策略来选取教师。为提高算法的全局搜索能力和局部搜索能力,选用了自适教学因子。最后,将新算法与基本TLBO算法在4个测试函数上进行了测试,结果表明,新算法能够有效平衡全局搜索和局部搜索能力,收敛精度高。
简介:摘要本文研究由机械、电气及其控制等设备组成的风力发电单元、将太阳能转换为电能的光伏发电设备、燃料电池、以天然气、甲烷等燃料的超小型热力发电机和蓄电池储能装备组成的并网运行的微电网优化运行问题,本文考虑微电网中各单元的发电成本和环保成本,使微电网在一个调度周期内综合经济最低,建立微电网多目标优化运行模型,采用pareto支配方法与群智能算法结合的方式解决多目标优化问题,本文中采用的群智能算法是人工鱼群算法,求解模型得出微电网一个调度周期的最优各发电成本和运行总成本,并与基本的人工鱼群算法进行比较,仿真表明改进算法的收敛速度和收敛性都有所提高,并且在多目标的考虑上更贴合实际。
简介:BP神经网络分类器在信号识别领域得到了比较广泛的应用,针对其低信噪比环境下识别率相对较低的问题,引入人工蜂群算法(ABC),将求解BP神经网络各层权值、阂值的过程向蜜蜂寻找最优蜜源的过程转变,最后阐述了一种以人工蜂群算法为基础的神经网络分类器设计方法(ABCBP算法),并以2ASK,2FSK,2DPSK信号为例,对信号进行小波包分解后,将信号各频段的能量值数据作为实验样本,对其进行了信号分类。仿真结果表明:基于人工蜂群算法的优化BP神经网络分类器,即使在5dB的信噪比环境下,仍可达到94%以上的识别率,并具有较好的稳定性,这为信号识别领域中分类器的设计提供了一个很好的理论依据。
简介:摘要优化变电检修计划,可以获得更加经济和理想的检修计划方案。基于这种认识,本文提出了一种基于粒子随机变异思想的改进型离散粒子群算法,能够对变电检修计划模型进行优化。从计划的优化效果来看,采用该算法可以降低变电检修成本,并使检修工作效率得到提高,因此可以为变电检修带来更多的效益。
简介:提出一种应用于三相四线制有源电力滤波器(APF)的瞬时无功功率ip-iq谐波电流检测方法,用于解决传统检测方法提取精度低、收敛速度慢、稳定性较差等问题,采用自适应递推最小二乘法(RLS)算法取代低通滤波器。新方法以改进瞬时无功功率ip-iq法为电流检测依据,先减去电流中的零序分量,再利用坐标变换矩阵计算出电流有功、无功以及交直流分量。结果显示,该算法有效提高了直流分量的提取精度,在三相四线制APF中采用该方法是可行有效的。
简介:针对传统智能算法在无限脉冲响应(IIR)数字滤波器设计面临的收敛速度较慢和容易陷入局部极值等问题,提出了一种基于猫群优化算法的IIR数字滤波器设计方法。猫群优化算法分为搜寻模式和跟踪模式,通过对猫群行为的观察,改进猫群的行为模式并利用该算法设计IIR数字滤波器,经过与利用粒子群算法与自由搜索算法设计的滤波器进行比较,证明用本文算法设计的数字滤波器有更好的效果。
简介:摘要提出了一种配电网单相接地故障选线检出的新方法。该方法采用一种新的非线性、非平稳信号的处理方法—改进的希尔伯特黄变换,应用于电力系统故障选线中。将各条线路的电流进行经验模态分解(EMD),把原始信号用一系列的固有模态函数(IMF)来表示,得到瞬时频率和瞬时幅值,体现了时间—频率—幅值的分布特征,能够准确的提取配电网单相接地故障信号中的暂态成分。
简介:摘要提出了一种配电网单相接地故障选线检出的新方法。该方法采用一种新的非线性、非平稳信号的处理方法—改进的希尔伯特黄变换,应用于电力系统故障选线中。将各条线路的电流进行经验模态分解(EMD),把原始信号用一系列的固有模态函数(IMF)来表示,得到瞬时频率和瞬时幅值,体现了时间—频率—幅值的分布特征,能够准确的提取配电网单相接地故障信号中的暂态成分。