学科分类
/ 1
9 个结果
  • 简介:针对结构振动的中频问题,提出了一种新的混合分析方法.具有低模态密度的子结构利用有限元建模,高模态密度子结构利用波动方法建模,并利用边界处的位移连续和力平衡条件进行求解.以耦合梁结构为例,给出了具体的计算过程,通过解析方法进行了仿真验证.结果表明了此混合方法的有效性.进一步地计算了高频子结构的能量密度响应,并且通过对比说明,此方法在计算边界位置的能量密度响应时可以得到精确度更高的结果.

  • 标签: 波动 有限元法 中频振动 混合方法 能量密度
  • 简介:应用Liapunov-Floquet变换,将参数振动系统转换成一个时不变系统,结合极点配置法,构成一个控制品质稳定的振动主动控制系统.并以机翼与航空发动机转子耦合振动为例,叙述参数振动主动控制结构以及控制系统稳定性的仿真结果.

  • 标签: 参数振动 Liapunov-Floquet变换 极点配置 主动控制 航空发动机转子
  • 简介:航天器对恶劣动力学环境的适应能力直接关系到整个航天飞行任务的成败,振动试验控制技术是动力学环境试验的关键环节.本文分析了近年来国内外航天器振动试验设备和振动控制算法的研发动态、基本原理和关键技术达到的水平.提出了跟踪研究的基本思路,途径及建议.

  • 标签: 航天器 力学环境 振动试验 技术进展
  • 简介:研究了在减速带激励下具有磁流变阻尼器悬架系统汽车的非线性动力学行为。汽车采用七自由度模型,磁流变阻尼器采用Sigmoid模型。根据第二类Lagrange方程建立了汽车振动微分方程,并采用四阶Runge-Kutta法进行了数值仿真。首先以减速带高度为参数对汽车运动进行分岔分析,然后通过时间历程图、相位图、Poincare截面分析了汽车在不同减速带高度时所呈现的不同运动形式,得到了系统发生混沌运动时减速带的高度范围,并分析了系统经拟周期运动通向混沌运动的途径。研究结果为汽车平顺性控制和安全性设计提供了理论指导。

  • 标签: 减速带 磁流变阻尼器 非线性 分岔 混沌
  • 简介:研究了空间结构振动抑制的被动非线性消振方法.提出了适用于空间环境的非线性消振器结构及动力学模型,该结构通过引入磁力实现空间环境下航天器结构的振动抑制.然后,从理论上建立了含有非线性消振器的空间悬臂梁结构动力学模型,并通过Galerkin截断及数值分析方法分析了瞬态激励下非线性消振器对空间悬臂梁结构的被动振动抑制效果.仿真结果表明,该被动非线性消振器对系统的能量耗散率可以达到92%,可以实现非常好的振动抑制效果,能够适应空间环境,并提高航天系统的可靠性.

  • 标签: 非线性消振器 磁力 被动控制 非线性动力学
  • 简介:利用外场瞬态振动时间历程数据获得能量谱包络,借鉴振动台控制理论中随机信号产生原理获得具有包络能量谱幅值特性以及典型外场试验数据相位信息的时域波形,并用振动台波形再现的方式进行产品瞬态振动环境试验;该方法为今后直接使用能量谱控制的瞬态振动振动台试验方法提供技术支撑.

  • 标签: 能量谱 时域波形再现 瞬态振动 快速傅里叶变换 冲击响应谱
  • 简介:基于三维、非定常、不可压缩Navier-Stokes方程以及k-ε两方程湍流模型,利用计算流体软件FLU-ENT,对列车通过时路堤声屏障气动力特性进行数值仿真,研究了声屏障上脉动力的变化.建立了高速列车通过路堤声屏障的数值计算模型,采用FLUENT中的滑移网格技术,对声屏障时产生的气动力进行数值模拟,列车速度分别为200km/h、250km/h、300km/h、350km/h.通过计算得到不同列车速度下声屏障上气动力的大小和变化情况,分析了气动力沿声屏障垂向和声屏障纵向的变化规律,并拟合了声屏障压力波幅值与列车速度的关系式.在ANSYSWorkbench软件中建立了声屏障的结构计算模型,将声屏障上的气动力作为外部荷载加到声屏障上,对其进行了模态分析和瞬态动力学分析.

  • 标签: 高速列车 声屏障 气动压力 动力响应
  • 简介:随机振动试验中存在的加速度功率谱密度带外超差问题对普遍采用的随机振动试验非常重要,本文分析了功率谱密度带外超差出现的原因、征兆、对试验产生的影响以及采取的解决措施,并且分析了常用随机振动试验和振动试验计量检定标准中对功率谱密度带外超差的规范要求.关键词随机振动,加速度功率谱密度,

  • 标签: 随机振动 加速度功率谱密度 带外超差
  • 简介:利用参数互异的Fitzhugh—Nagumo神经元构建了含耦合时滞的无标度神经元网络模型,通过数值模拟的方法,提出研究参数异质性和耦合时滞影响下神经元网络的共振动力学.结果发现,当耦合项中不含时滞时,适中的参数异质性能够使得神经元网络对外界弱周期信号的响应达到最优,即适中的参数异质性能够诱导神经元网络的共振响应,而且异质性诱导共振对耦合强度具有鲁棒性.更重要的是,耦合时滞对参数异质性作用下神经元网络的共振特性也有着显著性影响.当时滞约为信号周期的整数倍时,神经元网络能够周期性地出现共振现象,即适当的耦合时滞能够诱导神经元网络的多重共振,而且这种现象在异质性参数的适当范围内都能明显出现.

  • 标签: 共振 异质性 时滞 神经元网络 谱放大因子