简介:在许多线性振动的教材和手册中,关于固有振型节点规律表述存在不妥.本文对该问题进行分析,指出必须理解Гантмахер和Крейн关于固有振型节点定理的前提和局限性.文中详细分析了两自由度系统固有振型节点的规律,给出若干新的结论.基于该规律对一类多自由度组合系统的固有振型进行分析,说明可人为设计结构来满足特定的固有振型阶次与节点数关系.
简介:为研究含间隙齿轮碰振系统的全局及周期运动的稳定性及分岔条件,建立了齿轮副主动轮的单自由度非线性动力学模型.运用非光滑系统Melnikov理论研究齿轮系统异宿轨道全局分岔条件,然后,求得各分段系统的通解,再将每个切换面作为Poincaré截面,运用组合映射的方法分析系统的周期运动特性.最后通过数值模拟,得到不同参数条件下系统的运动状态和分岔特性,验证了Melnikov方法分析齿轮非光滑系统的有效性.
简介:研究了一类二自由度模型在高速切削过程中的颤振运动.首先建立了二自由度切削运动模型,得到了四维的非线性分段方程,然后研究切削力中的动态分量对切削颤振的影响,应用特征值法解析建立了系统发生Hopf分岔的临界条件.结果表明,当分岔参数经过某一临界值时发生Hopf分岔.最后,通过数值方法对该系统进行了数值模拟,从而验证了该临界条件的有效性.
论固有振型的节点规律
含间隙齿轮碰振系统的全局动力学分析
高速切削过程中颤振现象的二自由度非光滑模型分析