简介:水文预报对于防洪、抗旱以及水资源调度等具有重要意义。水文预报通常依靠水文模型来完成,由于受到不同流域特点、产汇流机制等的限制,每个水文模型都具有各自的特点及适用区域。单一模型具有非常大的水文预报不确定性,为了解决单一模型局限性的问题,多模型水文预报常作为降低水文预报不确定性有效方法之一。选用三种常见的水文模型:时变增益水文模型、新安江模型和萨克拉门托模型,在珠江飞来峡流域进行分布式建模,采用相同的输入与初始场,三个模型独立进行模拟,然后对比三个模型的结果,并进行贝叶斯多模型加权平均和简单平均得到多模型平均结果,研究结果表明,贝叶斯模型处理后的结果要比单个模型模拟结果和简单平均处理后的结果准确率高。
简介:年最大洪峰流量预测,受较多的复杂因素的影响,不确定性较强,用常规统计方法做出准确预报具有较大困难.从水文序列本身出发,提出将投影回归模型应用于年最大洪峰流量预测,为了更好获得投影寻踪模型参数和预测精度,提出了运用延迟相关系数法确定回归预测因子、群居蜘蛛算法优化投影寻踪模型最佳投影方向参数a、利用最小二乘法确定多项式的权系数c、岭函数个数M的群居蜘蛛优化投影寻踪年最大洪峰流量预测模型,结合长江宜昌站(1882年-2004年)的年最大洪峰流量资料进行实例预测,训练阶段平均绝对相对误差为8.61%,预测阶段平均绝对相对误差为10.51%,该模型预测效果较好,模型结果稳定,可有效应用于年最大洪峰流量预测.
简介:传统的时空分布分析方法仅可以描述参考作物蒸散量(ET0)的平均时空分布情况,难以对ET0时空分布的离散程度与稳定性进行量化。根据安徽淮北平原5个站点的气象数据与地理信息资料,采用彭曼2蒙特斯公式计算ET0,基于云模型分析了其时空分布特征。结果表明:年ET0呈下降趋势,春、冬季增长,夏、秋季减小;年ET0空间分布较为均匀,季节ET0空间分布不均匀;2004年较为分散而不稳定,1956年较集中而稳定;阜阳站较为分散而不稳定,宿县站较集中而稳定;ET0时间变化的离散程度相对于空间分布较小,稳定性相近。因此,基于云模型分析ET0时空分布特性可行、有效,研究结果可为淮北平原不同作物蒸散发以及旱灾、灌溉等研究提供科学参考。
简介:分别采用自回归预测模型和小波神经网络模型对辽宁中部平原某区域地下水埋设进行预测,并结合区域内实测地下水埋深数据,对比分析不同模型的预测精度和适用性。结果表明:神经网络模型在辽宁中部地下水埋深预测精度好于自回归模型,更适用于辽宁中部地下水埋深的预测和趋势分析。研究成果对于辽宁中部平原区地下水埋深预测方法具有较好的参考价值。