简介:大数据是建立在全数据基础上,通过数据分析发现事物的相关关系,再运用发现的相关关系对事物发展趋势做出预测的数据分析理念和分析方法。依托案件管理系统,对各类案件进行大数据分析,可以发现特征证据要素与证成(证伪)犯罪之间具有的正相关(或负相关)关系、零相关关系。运用这些相关关系可以发现某类案件的证据状况,从而预警正在办理的案件可能发生的问题;判断证据发展的趋势,为证据结构调整做好准备;结合自由心证理念,增强审查定案的信心;根据证据缺陷,及时寻找弥补措施。由于在理论和实践上面临的困境,当前利用大数据审查认定案件主要局限于预测案件走向。不过,伴随大数据查询使用机制的建立,特征证据认定标准体系的确立,大数据网络共享机制的建立,大数据价值由预测转向适用不无可能。
简介:因犯罪区域差异、主客体博弈、人为和外界、定性定量混杂、影响因素多杂、模型不适应、数据规模小等诸多原因导致犯罪趋势研究非常困难,经实验研究用大数据AI介入犯罪趋势研究是有效解决方案:可从宏观、中观以及微观三个层面研究犯罪趋势彩响因素,宏观上人、自然及社会三方面,中微观上要特别关注社会心理。对数据量小、种类少、结构化数据多、存在模糊和灰色情况下釆用模糊灰色小数据预测模型;而对大范围实证研究,半结构化与非结构化数据多,经算法比较研究采用三维卷积神经网络深度学习算法比较适合大数据动态实时跟踪犯罪趋势预测。