简介:为提高粒子群算法的搜索效率,克服分解方法处理复杂多目标问题的不足,通过考虑父代解的选择和种群的更新对算法收敛性及解的分布均匀性的重要影响,提出了一种基于分解的改进自适应多目标粒子群优化算法。首先,为提高算法收敛速度,在分解方法确保进化种群多样性的前提下,设计了新的适应度评价方法以评价个体的优劣,并将在竞争中获胜的优质后代解添加到父代候选解中;其次,为避免算法陷入局部最优,在更新粒子时,从当前粒子的邻居或邻居外随机选择个体最优和全局最优位置;最后,引入外部文档,将其作为候选的输出种群,并采用拥挤距离维持多样性,增强了算法处理复杂问题的能力。用12个测试函数的数值实验,并与5种多目标优化算法的比较,表明了所提算法的优越性。
简介:摘要为满足经济与社会发展需要,智能电网建设在我国各地快速推进,智能电网条件下的多目标输电网规划问题也开始成为各界关注的焦点,基于此,本文简单介绍了余弦排序理论,并结合该理论就智能电网条件下的多目标输电网规划模型开展了详细论述,希望由此能够为我国智能电网的建设带来一定帮助。