简介:LetSbelongtoZn-{0}.ThecirculantdigraphDCn(S)isadirectedgraphwithvertexsetZnandareset{(i,i+s):i∈Zn,s∈S},A.AdamconjecturedthatDCn(S)≌DCn(T)ifandonlyifT=uSforsomeunitumodn.InthispaperweprovethattheconjectureistrueifSisaminimalgeneratingsetofZnandthusdeterminethefullautomorphismgroupsofsuchdigraphs.Themethodsweemployarenewandeasytobeunderstood.
简介:设D=(y(D),A(D))是一个强连通有向图.弧集SA(D)称为D的k-限制性弧割,如果D-S中至少有两个强连通分支的阶数大于等于后.最小k-限制性弧割的基数称为k-限制性弧连通度,记作Ak(D).k-限制性点连通度Kk(D)可以类似地定义.有k-限制性弧割(k-限制性点割)的有向图称为λk-连通(kk-连通)有向图.本文研究有向图D的限制性弧连通度和其线图L(D)的限制性点连通度的关系,证明了对任意λk-连通有向图D,kk(L(D))≤λk(D),当k=2,3时等式成立;若L(D)是Kk(k-1)连通的,则λk(D)≤Kk(k-1)(L(D));特别地,若D是一个定向图且L(D)是Kk(k-1)/2.连通的,贝0Ak(D)≤Kk(k-1),2(L(D)).
简介:针对传统惯性开关阈值散布大、万向性差等缺点,设计了一种环形无源万向微机电惯性开关。环形的可动质量框作为可动电极,由内部的四根折叠悬臂梁支撑,和外部的环状固定电极有一定间隙,构成xy平面内的万向开关。对设计开关进行有限元动态接触仿真,结果表明开关在1000g加速度作用下的响应时间和接触时间分别约为0.142ms和5s,表现出较高的触发灵敏度和良好的接触效果。研究悬臂梁线宽与开关阈值加速度的关系,结果表示悬臂梁线宽的微小变化会引起阈值加速度的较大变化。利用冲击台试验对封装后的开关进行阈值试验,试验结果表明实际阈值分布在900g-1300g范围内,80%的开关阈值比设计值大。用微电镜对悬臂梁线宽进行静态测量,悬臂梁线宽加工误差大多分布于0-+2m,加工误差直接导致开关的阈值加速度增加,设计阶段应充分考虑加工误差对阈值加速度的影响。
简介:提出一种利用感应腔1个支路和角向传输线实现直线型变压器驱动源(lineartransformerdriver,LTD)开关同步触发闭合的新方法,触发支路与LTD感应腔其他支路具有相同工作电压和气压,触发支路不包围磁芯.当触发支路开关被外施1路脉冲触发闭合后,产生快前沿高电压脉冲并沿角向线传输,触发感应腔其他支路开关.该触发方式在20支路并联500kALTD感应腔和34支路并联0.1Hz重频800kALTD感应腔上证明可行.基于该触发方式感应腔,又给出了从上游感应腔触发支路引出脉冲触发下游相应位置感应腔的次级为水介质传输线多级串联LTD驱动源的同步触发方法,可显著降低Z箍缩驱动源的外触发脉冲数量.
简介:一、单项选择题(每小题5分,共50分)1.已知点(3,-4),那么它到x轴的距离为( )(A)3 (B)4 (C)-3 (D)52.如果k>b>0,那么直线y=kx+b的图象必不经过( )(A)第一象限 (B)第二象限(C)第三象限 (D)第四象限3.函数y=kx的图象经过点(-2,2),那么直线y=kx-k的图象经过( )(A)第二、三、四象限 (B)第一、二、三象限(C)第一、二、四象限 (D)第一、三、四象限4.满足b<0,c<0的二次函数y=x2+bx+c的图象大致是( ) 5.两圆圆心都在y轴上,且两圆相交于A、B两点,若A点坐标为(2,2),则B点坐标为( )(A)(2,-2)
简介:一、一元选择题(每小题3分,共45分)1.-|-2|的倒数是( )(A)-2 (B)-12 (C)12 (D)22.(-a3)2÷(-a)的运算结果是( )(A)a6 (B)-a6 (C)a5 (D)-a53.如果一个多边形的内角和等于它的外角和的2倍,那么这个多边形是( )(A)三角形 (B)四边形(C)五边形 (D)六边形4.如果实数x、y满足|x+2|+(x-12y)2=0,那么xy的值等于( )(A)-116 (B)116 (C)-18 (D)185.当锐角A>30°,cosA的值( )(A)小于12 (B)小于32(C)大于12 (D)大于326.要使分式|x|-22x2-x-6
简介:说明 此组题主要训练对三角形一章的知识、方法的灵活应用能力. 一、选择题(每小题3分,共24分)1.定理:三角形的两边之和大于第三边的知识依据是( ).(A)两边差小于第三边(B)两点之间,线段最短(C)两点间的距离的定义(D)两点确定一条直线2.证明等腰三角形的性质定理的辅助线不能是( ).(A)顶角的平分线 (B)底边上的中线(C)腰上的中线 (D)底边上的高3.到三角形的三边距离相等的点是三角形的( ).(A)三条高的交点(B)三条中线的交点(C)三条角平分线的交点(D)三边的中垂线的交点图C-14.如图C-1,△ABC中,AB=AC,∠C=2∠A,BD是角平分线,则图中的等腰三角形
简介:说明 此组题是几何能力训练一的补充,主要训练识图、画图、计算、逻辑推理能力. 一、填空(1~6小题各3分,7~10小题各5分,共38分)1.目测图中全等的三角形可能有对.(如图C-16)图C-16图C-172.如图C-17,AB=AC,点D、F是∠BAC的平分线上两点,AD、DF满足关系时,S△ADC=S△BDF.3.画图,并回答.从△ABC的顶点B作∠A的平分线的垂线段BD,垂足为D,过点D作DE∥AC,交AB于点E.图中的直角三角形是,等腰三角形有.图C-184.如图C-18,AD∥BC,BE平分∠ABC,交AD于E.AD=8cm,AB=3cm,则ED=cm.5.如图C-19,△ABC中