学科分类
/ 1
3 个结果
  • 简介:针对多目标0-1规划问题,首先基于元胞自动机原理和人工狼群智能算法,提出一种元胞狼群优化算法,该算法将元胞机的演化规则与嚎叫信息素更新规则、人工狼群更新规则进行组合,采用元胞及其邻居来增强搜索过程的多样性和分布性,使人工头狼在元胞空间搜索的过程中,增强了人工狼群算法的全局搜索能力,并获得更多的全局非劣解;其次结合多目标0-1规划模型对元胞狼群算法进行了详细的数学描述,定义了人工狼群搜索空间、移动算子、元胞演化规则和非劣解集更新规则,并给出了元胞狼群算法的具体实现步骤;最后通过MATLAB软件对3个典型的多目标0—1规划问题算例进行解算,并将解算结果与其它人工智能算法的结果进行比较,结果表明:元胞狼群算法在多目标0-1规划问题求解方面可获得更多的非劣解集和更优的非劣解,并具有较快的收敛速度和较好的全局寻优能力。

  • 标签: 狼群算法 元胞自动机 智能优化 多目标 O-1规划
  • 简介:对含有动、静态背景的稳定图像处理时,对比了主成分追踪鲁棒主成分分析法(RPCA)、贝叶斯鲁棒主成分分析法(BayesianRPCA)和高斯混合模型的鲁棒主成分分析法(MoG-RPCA),3种方法对静态背景下的前景提取都较为完整.而动态背景下只有BayesianRPCA和MoG-RPCA提取出了完整的前景目标,但是BayesianRPCA计算速度很慢,且不能够处理复杂噪声.所以MoG-RPCA模型更具有对复杂噪声的适应性,动、静态背景情况下均提取出精度较高的前景目标,且具有较快的计算速度.当图像不稳定时,采用改进的MoG-RPCA模型对非稳定拍摄的抖动视频进行前景目标提取,并在第197帧抖动图像中清晰地提取出显著前景目标,且运算速度较快.在为了快速找到目标出现的帧时,对高斯混合模型背景差分法进行改进,利用K-means聚类算法快速得到聚类中心点,然后作为高斯混合模型背景更新时的初始化均值参数,从而提高在复杂场景下前景目标的检测精度.对于多角度追踪任务,不同角度、近似同一地点的多个监控视频图像中前景目标的提取,可采用跨摄像头视角跟踪结果融合的方法,然后对目标进行匹配.

  • 标签: 前景目标提取 MoG-RPCA模型 K-means高斯混合模型 多角度追踪
  • 简介:在广义系统故障诊断过程中,若系统动态模型中存在不确定性,传统的无迹卡尔曼滤波算法将失去其传感器故障估计精度。为解决该问题,提出一种改进的强跟踪卡尔曼滤波算法以实现广义连续-离散系统的传感器故障诊断及隔离。首先,提出基于多重渐消因子的强跟踪滤波算法以实现动态模型存在不确定性广义连续-离散系统的故障诊断;然后提出一种结合多模型自适应估计的强跟踪卡尔曼滤波(STUKFMMAE)算法以实现传感器故障的有效隔离。最后,针对基于广义连续-离散系统的惯性传感器故障模型提出仿真算例。仿真数据表明,传统无迹卡尔曼滤波对于传感器故障估计误差为0.002左右,而提出的基于多重渐消因子的强跟踪滤波算法对于传感器故障估计误差最大值为未超过4×10~(-4),且STUKFMMAE相较于UKFMMAE算法具有更好的隔离效果。仿真结果验证了设计方案的有效性。

  • 标签: 广义系统 连续-离散系统 故障诊断及隔离 多模型自适应估计 强跟踪卡尔曼滤波