简介:有限元模型修正是一类特殊的二次反特征值问题.我们将有限元模型修正看成二次规划问题来解决,并采用非线性Gauss-Seidel方法来求解其相应的Lagrange对偶函数.最后,给山的数值文验说明方法的有效性.
简介:确立了某类分块矩阵[M(11)M12XM21YM23ZM32M33]的最大秩公式,其中,X,Y和Z是三个受限于四元数线性矩阵方程A1X=C1,XB1=C2,A2Y=D1,YB2=D2,A3Z=E1,ZB3=E2的变量矩阵.作为该公式的一项应用,我们推导出上述矩阵方程解集等同于某类四元数三次矩阵方程组A1X=C1,XB1=C2,A2Y=D1,YB2=D2,A3Z=E1,ZB3=E2,XYZ=J解集的条件.
简介:<正>"一元二次方程根与系数的关系"(简称‘韦达定理’)是方程知识中的一件瑰宝,也是中学数学的一个十分重要的知识点.它不仅很好地揭示了一元二次方程的内部规律,为初中学生可接受,而且它有广泛的应用.它是解决二次函数的相关综合题的重要手段,也是今后高中学习平面解析几何和大学学习空间解析几
简介:<正>方程是初中数学中数与代数的知识点之一,也是解决其它数学问题的工具之一,尤其是函数、不等式与它的联系非常密切.近年数学的各种赛项试题离不开方程这一内容.本人针对历年各市数学竞赛试题中有关一元二次方程的两根之差的绝对值与系数的关系及例题分析,与同仁们共议.
强Guass-seidel法求解有限元模型修正问题
一类四元数矩阵三次方程的可解性(英文)
例谈“一元二次方程根与系数的关系”的应用
一元二次方程两根之差的绝对值与系数的关系及其应用