学科分类
/ 1
6 个结果
  • 简介:针对深圳市遭受洪灾的风险评估和损失预测问题,就参加2014年'深圳杯'数学建模夏令营的部分论文进行简单评述。

  • 标签: 洪灾 风险评估 损失预测
  • 简介:针对GM(1,1)模型的适用范围是近指数情况,提出了将优化灰导数与利用原始序列模拟的相对误差平方和最小估计预测系数c相结合的方法,从而得到一种简化计算的新GM(1,1)优化模型,该模型的预测公式x(0)(k)=ce-ak在形式上比较简洁,并且经严格指数序列从理论上验证了参数a具有白化指数律重合性,预测系数c具有白化系数重合性.

  • 标签: GM(1 1)模型 灰导数 预测系数 最小二乘法 白指数律 白化系数重合性
  • 简介:针对系统误差的不确定性可能会引起滤波精度降低或发散的问题,提出一种新的基于模型预测滤波的前向神经网络算法。首先,采用模型预测滤波估计网络在正向传递过程中的模型误差,并对其进行修正,以弥补模型误差对隐含层权值更新的影响;然后,利用模型预测滤波为神经网络提供精确的训练样本,学习待估计系统的非线性关系。将提出的算法应用于SINS/CNS/BDS组合导航系统,并与扩展卡尔曼滤波进行比较,仿真结果表明,提出的算法得到的姿态误差、速度误差和位置误差分别在[-0.25′,+0.25′]、[-0.05m/s,+0.05m/s]和[-5m,+5m]以内,滤波性能明显优于扩展卡尔曼滤波算法,表明该算法能提高组合导航定位的解算精度。

  • 标签: 前向神经网络 模型预测滤波 权值修正 SINS/CNS/BDS组合导航
  • 简介:结合偏最小二乘法和支持向量机的优缺点,提出基于偏最小二乘支持向量机的天然气消费量预测模型。首先,利用偏最小二乘法确定影响天然气消费量的新综合变量,建立以新综合变量为输入,天然气消费量为输出的支持向量机模型,对天然气消费量进行了预测;然后,与多元回归、偏最小二乘回归、普通支持向量机做误差检验比较,验证该方法的可行性与正确性。结果表明,此天然气消费量预测模型具有较高的精确度和应用价值。

  • 标签: 偏最小二乘支持向量机 天然气消费 预测 误差比较
  • 简介:上海市社会总抚养比受到诸多因素的影响,导致数据波动性较大,单纯地采用灰色预测模型无法更加准确地进行预测,因此文章提出了基于最小二乘法的改进GM(1,1)模型.首先文章介绍了普通GM(1,1)模型的建立方法与步骤;接着通过采用最小二乘法的原理弱化波动较大的数据,加强其规律性从而建立新的GM(1,1)模型;最后结合2007-2011年上海市社会总抚养比数据建立新的预测模型,并用2012年数据对模型进行验证合格,可以用来预测未来几年上海市社会总抚养比,便于该市对未来经济的发展宏观调控.结果表明该预测方法是合理可行的,为其他相关预测提供了理论依据.

  • 标签: 社会总抚养比 上海 预测 最小二乘法 GM(1 1)模型