简介:条纹反射法是一种结构简单的三维面形检测手段,本文对该方法在智能手机、平板等移动设备中的集成和应用进行了研究。首先,对条纹反射法标定误差以及智能设备的特点进行了分析。然后,在分析实际检测中的关键误差基础上,提出了通过相机非线性定标、改善相移算法、格点位置标定、应对相机自动增益调整等一系列方法和算法,在设备现有硬件条件下提高了测量精度和稳定性;最后,使用iPadAir对直径为105mm的SiC反射面进行了实验。结果表明,标定精度在毫米量级时,对反射面的检测精度RMS值达到33μm,并且以低频误差为主,在局部高频区域检测结果有明显优势,证实了在不使用其他外部设备前提下,集成于智能平板的条纹反射法具备几十微米量级精度的检测能力。
简介:针对当前行人运动特征监测方案中存在运动信息种类单一、特征提取不完善、识别算法复杂且需要依赖专业检测设备等问题,提出基于智能移动端内置惯性传感器的行人运动特征自动辨识方案,为运动特征识别提供准确多样的运动信息。采集移动端MEMS加速度计输出信息后,分别提取加速度数据的三种时域及频域特征后,通过训练最邻近规则分类器实现行人行走、跑步和上下楼梯运动模式的自动识别。不同年龄不同身高的男女性运动特征提取实验结果表明,基于最邻近规则的移动端行人运动特征辨识方法对4种日常活动的平均查准率和查全率分别达到88.7%和90.3%,对提高微惯性行人导航系统普适性具有促进作用。
简介:为了实现GPS信号缺失下的移动机器人自主导航,解决传统粒子滤波中的粒子退化以及粒子贫乏引起的移动机器人定位和导航精度下降问题,提出了基于小生境理论的启发式蝙蝠优化粒子滤波的同时定位与地图构建算法。首先,在启发式蝙蝠优化算法的速度和位置更新过程中,引入惯性权重,加快了算法寻优精度,提高了收敛速度;然后,利用小生境理论进一步优化启发式蝙蝠算法,利用排挤机制和惩罚函数,有效地保证了种群的多样性,提高了算法的全局寻优能力;最后,将基于小生境理论的启发式蝙蝠优化算法用于传统粒子滤波采样中,使得粒子能够智能、快速地向高似然区域运动,同时提高了传统粒子滤波算法的全局寻优能力和寻优精度。实验结果表明:该算法显著提高了移动机器人导航和定位的精度和实时性。