简介:针对CNS/INS组合导航系统中缩短初始对准时间的问题,设计了一种CNS/INS组合导航系统组合对准新方法。在CNS/INS姿态四元数组合算法的基础上,推导CNS/INS组合系统线性化状态方程,分析了INS和CNS姿态四元数差值构建量测方程。利用递推最小二乘原理实现了对该组合系统的信息融合,设计了基于该估计原理的组合导航系统初始对准方法,考虑到大气层内动基座条件下对于星敏感器造成的干扰因素增加了加权处理环节,最后通过仿真实验验证了递推加权最小二乘法在处理组合导航系统初始对准中的有效性。仿真结果表明在微晃基座条件下,与传统的滤波方法相比较该估计方法能够有效地缩短约25%的对准时间。
简介:捷联惯性导航系统静基座初始对准时一般先进行粗对准,使失准角缩小到一定范围内从而满足小失准角假设下的线性误差模型,然后再进行精对准。在不进行粗对准时失准角一般为大角度,需要采用复杂的非线性误差模型和非线性滤波方法。研究发现通过设置合理的误差协方差矩阵初值,采用反馈校正滤波结构,并引入强跟踪滤波算法可以在大失准角情况下既无需粗对准,又无需采用非线性模型来实现精对准。仿真结果表明,该方法可以实现大失准角初始对准,鲁棒性好,在任意姿态初值下都可以使航向角在300s内收敛到0.05°的理论极限精度,与小失准角精对准方法的速度和精度相当但省去了粗对准因而耗时更短,与无迹卡尔曼滤波在600s时才收敛到0.5°的速度相比大为改善。