简介:本文将文献中的求解二维的有交界面的椭圆型方程的浸入界面方法推广到界面及间断条件都由定义在界面某个邻域的网格函数点上的函数隐式提供的情形,给出了一种间断条件捕捉格式。它特别适合干隐式界面跟踪法如水平集方法。对原浸入界面方法中的界面间断关系,确定不规则点差分格式的系数的代数方程组和修正项都针对新的情形进行了相应的修正。该格式利用标准的二阶拉格朗日插值计算间断函数沿界面的导数,避免了文献中的用样条函数的局部界面重构,易于执行。数值计算验证了该法的关于最大模的二阶收敛性。
简介:设H是一实Hillber空间,K是H之一非空间凸子集,设(Ti)i=1^N是N个Lipschitz伪压缩映象使得F=∩i=1^NF(Ti)≠Ф,其中F(Ti)={x∈K:Tix=x}并且{αn}n=1∞,{βn}n=1^∞包含[O,1]是满足如下条件的实序列(i)∑n=1^∞(1-αn)^2=+∞;(ii)limn→∞(1-αn)=0;(iii)∑n=1^∞(1-βn)〈+∞;(iv)(1-αn)L^2〈1,arbitaryn≥1;(v)αn(1-βn)^2+αm[βn+L(1-βn)-]^2〈1,其中L≥1是{Ti}i=1^N的公共Lipschitz常数,对于x0∈K,设{xn}n=1^∞是由下列定义的复合隐格式迭代xN=αnxn-1+(1-αn)Tnyn,yn=βnxn+(1-βn)Tnxn,其中Tn=TnmodN,则(i)limn→∞||xn-p||存在,对于所有的p∈F;(ii)limn→∞d(xn,F)存在,其中d(xn,F)=infp∈F||xn-p||;(iii)limn→∞inf||xn-Tnxn||=0.本文的结果推广并且改进H—K.Xu和R.G.Ori在2001年的结果和Osilike在2004年的结果,并且在这篇文章中,主要的证明方法也不同与H—K.Xu和Osilike的方法.
简介:在Banach空间中利用双线性连续泛函F代替内积引进了新的一类完全广义混合隐似平衡问题,引进了F强单调的概念,提出了该平衡问题的广义辅助问题,证明了广义辅助问题的收敛定理,给出了新的算法和由此算法产生的迭代序列的收敛特征.
简介:本文致力于研究非线性中立型延迟积分微分方程隐式Euler方法的收缩性。本文中的Lipschitz数是关于变量t的函数,而不是常数,最终能得到其数值解的结果是收缩的。
简介:一、判断题(每小题1分,共5分)正确的在括号内画“〖,错误的在括号内画“∨”.1.数轴上的点表示的数,右边的比左边的大.( )2.任何有理数都有倒数.( )3.已知|a|=2,则a=2.( )4.x+3x+1是一元一次方程.( )5.两个数的和与这两个数的积都是负数,那么这两个数均为负数.( )二、填空题(每小题2分,共36分)1.-13的相反数是,0.5的倒数是.2.绝对值等于它本身的数是.3.(-15)+6=,-20-(-4)=.4.(-312)-( )=0.5,(-5)+( )=-125.( )×(-3.6)=18,( )÷(-3.5)=-4.6.用科学计数法表示250300=.7.单项
简介:一、填空1.方程13xa+2=3是一元一次方程,则a=.2.3x-2与2x-3互为相反数,则x=.3.(2x-1)2+|3y+2|=0,则x=,y=.4.当m=时,关于x的方程mx-8=17+m的解是-5.5.若5xmy与12yn+2x3是同类项,则m=,n=.6.把浓度为95%的酒精1500克稀释为75%的酒精,需加水克.二、单项选择题1.已知y=1是方程2-13(m-y)=2y的解,那么关于x的方程m(x-3)-2=m(2x-5)的解是( )(A)x=-2 (B)x=-1(C)x=0 (D)x=12.用60厘米长的铁丝做成一个长方形的教具,使长为10厘米,宽为x厘米,所列的方程是( )
简介:一、判断题(每小题1分,共10分)1.整数和分数统称有理数.( )2.设甲数为x,若乙数比甲数的一半小2,则乙数是12(x-2).( )3.若a、b互为相反数,则13(a-b)=0.( )4.若a>0,b<0,则1a>1b.( )5.没有最大的负数.( )6.两个有理数的差一定小于被减数.( )7.任何有理数都有倒数.( )8.两个有理数的和与积都是正数,则这两个数必都是正数.( )9.如果(-x)2=9,那么x=3.( )10.一个数的平方一定是正数.( )二、填空题(每小题2分,共20分)1.-35的相反数是,-23的倒数是.2.x的平方与y的倒数的和表示为.3.绝对值是5的数是,平方得2