简介:由于设备会随着使用时间的增加和自身寿命增长引起的退化而逐渐磨损失效进而发生故障.因此对于生产企业来说,想要提高自身竞争力,就要在生产过程中合理地安排预防性维护以减少设备故障导致的计划外停机,防止生产计划和生产线的中断,从而才能获取更多收益.本文从生产企业的角度出发,提出单机生产系统的非等周期不完美预防性维护与生产的联合优化策略,综合考虑生产价值、生产成本、生产延迟成本及各类维护成本等,构建了总利润率模型,目标是使总利润率最大化.其中涉及到的三类维护方式为(1)完美维护——即更换;(2)小修维护——即使设备“恢复如旧”;(3)不完美预防性维护——即使设备状态恢复到介于“完全如新”与“恢复如旧”之间的某状态.最后本论文通过数字实例,验证了新策略模型在实际生产应用中的有效性.
简介:本文提出了求解非线性方程组的一种非精确Broyden方法.该方法是文献[8]中精确Broyden方法的推广.在适当的条件下,我们证明了非精确Broyden方法具有全局收敛性和超线性收敛性.数值实验表明,该方法效果较好.
简介:以近空间尖前缘高超声速巡航飞行器的研制为背景,作者在前一阶段采用模型理论分析方法,陆续研究了沿微钝前缘驻点线的化学非平衡流动和气动加热相似律,文章是上述研究的综合回顾和深化讨论.稀薄条件下,驻点附近流动和传热出现一系列与连续流动模型不同的新特征,超出了经典气动热预测理论的适用范围.作者建立了一个沿驻点线能量传递和转化的广义模型,并分别推导了具有实际物理意义的边界层外离解非平衡流动判据和边界层内复合非平衡流动判据.基于这些判据构建了预测非平衡流动驻点气动加热的桥函数,并讨论了稀薄非平衡真实气体流动和气动加热的相似律,发现新型近空间尖前缘飞行器遭遇的气动热环境不同于传统大钝头航天器再入问题,传统的天地换算相似准则将会失效.这些理论分析结果可为稀薄非平衡化学反应流及气动加热的实验和计算提供一个标模检验的手段.
简介:本文讨论形如AnX—ACnX的方程,其中An是一个对称三对角矩阵,Cn是一个对角矩阵.对矩阵An进行3×3分块,给定An的一个非顺序主子阵Ar+1,r+s,给定Cn和四个向量X1=(x1,…,xr),X3=(xr+s+1,…+,xn)Y1=(y1,…,y1),Y3=(yr+s+1,…,yn)'和两个不同实数A,P,构造一个对称三对角矩阵A。和两个向量X2=(Xr+1,…,Xr+x)',Y2=(yr+1,…,yr+s)’,满足AnX=λCnX和AnY=μCnY,其中X=(X1,X2,X3,Y=(Y1,Y2,Y3)本文给出问题有解的条件,解的表达式和相应算法,并给出数值算例验证算法的有效性.
简介:为提高攻击导弹同时面对目标飞机及其防御导弹情况下的命中概率,基于微分对策理论,对攻击导弹的制导律进行了设计。应对独立控制的多对象博弈问题,微分对策理论具有天然的优势,且相比于最优制导律,微分对策制导律对于目标机动估计误差和机动策略具有更强的鲁棒性。所推导的微分对策制导律进一步考虑了攻击导弹的控制有界性,且适用于攻击导弹、目标飞机和防御导弹具有高阶线性控制系统动态的情形。为验证制导律性能,进行了非线性系统仿真,结果表明该制导律在成功归避防御导弹的同时可实现趋于零脱靶量的目标拦截。攻击导弹为实现规避和攻击的双重任务,仅需要保持相比于防御导弹两倍左右的机动优势。
简介:本文中,我们研究一类由极大Bochner—Riesz算子和Lipschtz函数A生成的多线性算子,获得了它的(Lp,上q)型,而且我们还将证明此算子从Lebesgue空间到Lipschtz空间、从Herz空间到Campanato空间和从Lp空间到Tribel—Lizorkin空间的有界性.
简介:随机需求库存-路径问题(StochasticDemandInventoryRoutingProblem,SDIRP)是典型的NP难题,也是实施供应商管理库存策略过程中的关键所在。文章通过引入固定分区策略(FixedPartitionPolicy,FPP),将SDIRP分解为若干个独立的子问题,并采用拉格朗日对偶理论以及次梯度算法确定最优的客户分区。在此基础上证明了各子问题的最优周期性策略由分区内各客户的(T,S)库存策略以及相应的最优旅行商路径构成,进而给出了客户需求服从泊松分布时求解最优(T,S)策略各参数的方程组,并设计了求解算法。最后,通过数值算例讨论了上述策略以及算法对于解决SDIRP的有效性。