学科分类
/ 1
3 个结果
  • 简介:[目的/意义]为了提高尺关键点定位准确率,猪维点云尺自动测量方法会采用点云分割,在各个分割后局部点云定位测量关键点,以减少点云之间相互干扰.然而点云分割网络通常需要消耗较大计算资源,且现有测量点定位效果仍有待提升空间.本研究旨在通过设计关键点生成网络从猪点云中提取出各尺测量所需关键点.在降低显存资源需求的同时提高测量关键点定位效果,提高尺测量的效率和精度.[方法]针对猪维表面点云进行尺测量,提出了一种定位猪尺关键点的模型Pig Back Transformer.模型分为两个模块,分别设计了两种改进的Transformer自注意力编码器,第一模块为全局关键点模块,首先设计了一种猪背部边缘点提取算法用于获取边缘点,再使用edge encoder编码器以边缘点集合作为输入,edge encoder的edge attention中加入了边缘点和质点的偏移距离信息;第二模块...

  • 标签: Pig Back Transformer三维点云体尺自动测量测量关键点定位深度相机自注意力机制
  • 简介:[目的/意义]准确高效地获取马匹尺信息是马产业现代化进程中的关键环节.传统的人工测量方法耗时长、工作量大,且会对马匹造成一定应激反应.因此,实现准确且高效的尺参数自动测量对于制定蒙古马早期育种计划至关重要.[方法]选择Azure Kinect深度相机获取蒙古马双侧RGB-D数据,以YOLOv8n-pose为基础,通过在C2f模块中引入可变形卷积(Deformable Convolution v2,DCNv2),同时添加洗牌注意力机制(Shuffle Atten-tion,SA)模块和优化损失函数(SCYLLA-IoU Loss,SIoU)的方法,利用余弦退火法动态调整学习率,提出一种名为DSS-YOLO(DCNv2-SA-SIoU-YOLO)的模型用于蒙古马尺关键点的检测.其次,将RGB图中的二维关键点坐标与深度图中对应深度值相结合,得到关键点维坐标,并实现蒙古马点云信息的转换.利用直通滤波、随机抽样一致性(Random Sample Consensu...

  • 标签: 蒙古马体尺测量卷积神经网络注意力机制三维点云处理YOLOv8n-pose
  • 简介:[目的/意义]牛的尺参数是反映牛身体发育状况的关键指标,也是牛选育过程的关键因素.为解决规模化肉牛牧场复杂环境对肉牛尺的测量需求,设计了一种图像采集装置以及尺自动测量算法.[方法]首先搭建肉牛行走通道,当肉牛通过通道后进入限制装置,用英特尔双目深度相机D455对牛只右侧图像进行RGB与深度图的采集.其次,为避免复杂环境背景的影响,提出一种改进后的实例分割网络Mask2former来对牛只二维图进行前景轮廓提取,对轮廓进行区间划分,利用计算曲率分析方法找到所需尺测点.然后,将原始深度图转换为点云数据,对点云进行点云滤波、分割和深度图牛只区域的空值填充,以保留牛区域的点云完整,从而找到所需测点并返回到二维数据中.最后,将二维像素点投影到维点云中,利用相机参数计算出投影点的世界坐标,从而进行尺的自动化计算,最终提取肉牛体高、十...

  • 标签: 肉牛体尺测量深度学习点云分割实例分割注意力机制Mask2former