简介:3D人脸图像数据库广泛应用于计算机视觉、动画绘图设计、医学等很多领域。在法庭科学领域,采集三维人脸图像并建立数据库,可进行人像特征分类、统计人像特征的分布以及训练人像模型,这些分析是人像比对和识别的基础。与传统的二维数据库相比,三维(3D)人脸图像库能够提供更多信息,例如,三维人脸图像的空间结构和形状包含多视角轮廓。3D人脸图像采集方法包含多视角几何信息的方法、结构光的方法和3D扫描仪的方法,这些方法有不同的采集设备和环境。国内外已经建立了几个有代表性的3D人脸图像数据库,例如MPI实验室的MPI和BJUT的BJUT-3D,但这些库在分辨率和精度方面尚有不足。本文首先回顾了MPI、BJUT-3D数据库和它们的采集环境,然后对建立中国人的高精度3D人脸图像数据库进行探索研究。用彩色手持三维扫描仪(ArtecSpider)采集了1100个3D人脸图像,这些图像包含彩色纹理和深度信息(几何形状和点云),每个人脸图像的几何形状的采样点数目超过2000万,三角面片数目超过4000万。与BJUT-3D人脸数据库在人脸形状、分辨率和纹理等方面的比较结果显示,本研究采集的人脸图像有更高的精度,在嘴巴、鼻子、眼睛等方面比其他数据库中的人脸图像显示了更多的细节。建立的数据库将会支持在3D人像识别和算法评估方面的进一步工作。
简介:多民族情感计算和识别研究有利于分析和理解不同民族之间情感表达的差异性,而不同民族之间的情感分析和识别研究需要以多民族情感数据作为数据基础。利用情感诱导视频等方式采集人的面部表情和眼动数据,建立了包含5个民族6种基本表情的多民族情感数据库。其中包含11328幅表情图片和196个眼动轨迹信息。实验过程中对图像和数据文件名构建编码规则,对取得的表情图片数据进行灰度化、人脸关键部位截取等图像处理,同时提取眼动仪记录的眼动数据,将表情图片及眼动轨迹信息进行整理,进而组成多民族情感数据库。该数据库的建立对多民族情感识别和智能人机交互领域的发展起到一家促进作用。
简介:摘要人脸识别技术在实际生活中应用广泛,本文首先回顾近年来人脸识别的一般方法超分辨率算法、基于稀疏表示的分类方法、基于核范数的矩阵回归方法,并分别指出现有方法的适用范围及其局限性。最后对现阶段人脸识别在实际应用中亟待解决的问题进行总结,并展望今后人脸识别研究的发展趋势。