简介:【摘要】工业机器人的发展和进步对机械制造业有着至关重要的发展在对机器人不断的探索中,将机器人逐步的替代人工作成为了可能,同时随着技术要求的不断提高,对机器人整体的结构和实现功能也有了更多的需求[1]。七关节机械臂相对于传统的六关节机械臂要多出一个轴,在相同的工作环境中,七关节机器人可以更加灵活的绕过障碍到达制定坐标。本次采用NX建立的七关节机械臂模型,将其导入经adams中,通过对其末端执行机构施加一定的载荷分析其结构的合理性并加以优化结构。通过D-H法建立七关节机器人的运动学方程,在不同状态下各个关节坐标的实时位置。最后使用ABAQUS对进行CAE分析,进一步通过在模拟运动受力仿真,中到各个关节最大的受力处,并通过优化功能解算最优结构的可行
简介:构造了一类新的含有包含绝对值的非线性项的三维二次自治混沌系统,根据稳定性理论分析了系统的定性行为,并借助Matlab软件进行了数值模拟,得到了系统的部分动力学特性。通过Lyapunov指数谱讨论了系统参数对系统混沌特性的影响,结果表明随着系统参数的变化系统平衡点的稳定性发生变化。进一步通过分岔图、Poincare截面图以及相图验证了上述结论。
简介:从考虑损伤的粘弹性材料的一种卷积型本构关系出发,建立了在有限变形下损伤粘弹性Timoshenko梁的控制方程.利用Galerkin方法对该组方程进行简化,得到一组非线性积分-常微分方程.然后应用非线性动力学数值分析方法,如相平面图,Poincare截面分析了载荷参数对非线性损伤粘弹性Timoshenko梁动力学性能的影响.特别考察了损伤对粘弹性梁的动力学行为的影响.
简介:分析了一个新混沌系统的超混沌动力学行为,给出了这个未知参数的超混沌系统的自适应控制和同步问题的数值模拟结果.运用相图、分岔图、Lyapunov指数谱和庞加莱截面图,返回映射和功率谱等揭示了系统混沌行为的普适特征,基于Lyapunov稳定性理论,采用自适应控制方法将系统的混沌运动控制到一个不稳定的平衡点.此外,设计自适应控制律以实现超混沌系统的状态同步,仿真结果表明所提出的方法的有效性.
简介:针对具有大范围运动慢变量和小幅度振荡快变量的强非线性刚-柔耦合多体系统,建立一种刚性杆-弹簧摆模型。给出了该双时间尺度变量系统的无量纲动力学方程,以频率比、摆长比作为控制参数,对系统在不同初始条件下的非线性动力学行为进行了数值模拟和分析。由于快、慢变量之间的相互耦合,动力学方程表现出强非线性的特点,对数值方法提出了更高要求。采用一种高精度的三次Lagrange插值精细积分法进行数值求解,并给出了系统不同的运动状态对应的参数范围。数值分析结果表明,系统变量在不同的控制参数和初始条件下,呈现出了复杂的混沌动力学行为,快变量显示了经由准周期环面破裂分岔通往混沌的途径。