简介:摘要利用传统的单端电压、电流电气量进行故障测距时,容易受到过渡电阻的影响而导致测量距离不精确。本文以小波变换为基础,将传统的单端电气量与反向传播(BP)神经网络算法相结合,提出了一种用于故障测距的新方法,通过大量的仿真验证表明,该方法能够适应各种环境的要求,且精度高,具有一定的实用价值。
简介:在传统神经网络的基础上,引入小波函数而构成的小波神经网络具有极强的函数映射能力,在图像压缩领域有着较多应用.为了进一步提高图像的压缩质量,引入了遗传算法对传统小波神经网络算法进行改进,在对小波基平移和伸缩参数系数进行寻优时,将其作为种群初始化,经过选择、交叉和变异,获得最佳染色体,最后将最佳染色体转化成对应的权值、伸缩系数和平移系数从而进行小波神经网络映射.实验结果表明,改进后的小波神经网络图像压缩方法相较传统小波神经网络法,均方误差分别降低了14.8%和16.7%,图像信噪比分别提高了9.15%和7.11%,图像压缩质量有了较大提高.
简介:为了掌握洪湖水质未来的变化情况以及预防污染事件的发生,建立了一个BP神经网络水质指标预测模型。利用洪湖1990~2014年的水质指标实测数据作为学习样本,选取了pH、溶解氧(DO)、铵态氮(NH4+—N)、硝态氮(NO3-—N)、总氮(TN)、总磷(TP)6项指标作为预测参数,建立了BP神经网络模型,并运用该模型对洪湖水质指标进行了预测,同时引入一元线性回归模型与GM(1,1)灰色预测模型与该模型进行对比。结果表明,BP神经网络模型预测的水质指标的相关性系数都在0.998以上,平均相对误差都控制在2.5%以内,对单个指标的预测相对误差也都小于9%,明显优于一元线性回归模型和灰色预测模型;BP神经网络模型预测精度较高,预测速度快,能够相对准确地预测大部分水质指标,可以有效地应用于洪湖以及其它水域水质指标的预测和水质趋势的预警预报系统中。