简介:研究具有可选服务的M/M/1排队模型的主算子在左半实轴上的点谱.当顾客的到达率λ,必选服务的服务率μ1与可选服务的服务率μ2满足λ/μ1+λμ2〈1时,证明区间(η,-λ)中的所有点都是该主算子的几何重数为1的特征值,其中η=max{-μ1,-μ2,-4/3λ,-2λμ2/μ1+μ2-λ,-μ1μ2(μ1μ2-λμ1-λμ2)+λ3μ1(1-r)/[μ12(μ2-λ)+μ1μ2(μ1-λ)](1-r)+λ2μ1-λ},r表示顾客选择可选服务的概率.
简介:证明对一切θ∈(0,1),所有θ(2√λη-λ-η)都是单重休假的M/M/1排队模型的主算子的几何重数为1的特征值.
简介:研究有两个服务阶段、反馈、Benoulli休假的M/G/1重试排队系统.通过嵌入马尔可夫链得到了系统稳态的充分必要条件,求得了系统稳态时队长和重试区域中队长分布及一些排队指标,并对稳态时系统中的顾客数的概率母函数进行分析.
简介:应用线性算子的积分群理论证明M/M^B/1排队模型的时间依赖解的存在唯一性,其次推出M/M/1排队模型的时间依赖解的存在唯一性。
简介:研究了以剩余寿命作为增补变量的M/G/1/K排队模型.利用泛函分析中线性算子半群的积分半群理论讨论了该模型的瞬态解的存在唯一性问题.
简介:证明0是具有可选服务的M/M/1排队模型的主算子及其共轭算子的几何重数为1的特征值,由此推出该模型的时间依赖解强收敛于该模型的稳态解.
简介:研究服务员强制休假的M/M/1排队模型的主算子在左半复平面中的特征值,证明(λ-μ-b)-√(b+μ)2-3λ2-μb/2是该主算子的几何重数为1的特征值.
简介:研究每个忙期中第一个顾客被拒绝服务的M/M/1排队模型的主算子在左半复平面中的特征值,证明对一切θ∈(0,1),(2√λμ-λ—μ)θ是该主算子的几何重数为1的特征值.