简介:摘要为促进公司安全管理实现信息化,科学预测公司安全生产形势,最大限度地降低事故发生概率及后果的严重程度,实现公司安全稳定发展,公司自2016年5月开始运行安全标准化管理信息平台系统,对不可接受风险自动预测预警。主要做法如下?
简介:摘要:为解决工业企业中,工业机器人、大型盾构机、道岔等大型工业设备,施工环境恶劣,维护成本昂贵,乃至产品质量和有序生产。开发工业设备预测性维护系统。系统基于SpringBoot后端框架、VUE前端框架、TensorFlow大数据分析框架对系统进行开发;基于物联网设备系统在针对非计划停机维护的相关工业指标进行实时数据采集;基于多数据源设定标准化API读取;基于SPARK大数据处理框架对设备维护模块进行在线实时分析;基于行业应用模型,在确保生产质量和生产进度的基础上,使用机器学习回归算法对历史数据和行业数据进行预测模型训练,输出预测性维护指标和大型停机检修计划表及预应对方案;最后通过行业场景应用验证了设计系统的可行性。
简介:摘要本文主要针对煤矿瓦斯监控系统展开分析,明确了煤矿瓦斯监控系统的趋势预测技术,明确了在预测的过程中应该采取的技术和方法,对煤矿瓦斯监控系统的具体应用的手段进行了探讨,供参考和借鉴。
简介:摘要:随着我国大力发展可再生能源,光伏并网发电系统的装机容量不断增加。然而,光伏并网发电系统的发电功率由于受气象因素的影响,其发电功率具有间歇性和波动性特点。大量光伏并网发电系统的随机接入会增加电网系统的复杂度,改变电网系统现有的裕度和发电计划,导致系统面临崩溃的风险。提高光伏并网发电系统的预测精度,有助于电力部门制定详细的发电以及调度计划,提高电力系统的运行稳定性。在大量阅读国内外文献的基础上,本文从三个不同方面对光伏并网的发电功率预测进行了研究。通过分析影响光伏并网发电功率的相关因素,选取主要影响因子作为神经网络的输入变量,采用基于神经网络的光伏发电预测模型对光伏发电功率进行预测。通过数据挖掘技术,从大量数据中筛选出与预测时段具有相似气象特征的数据序列,采用灰色关联度理论对光伏发电功率进行预测。通过组合预测技术的权值计算理论,分别对神经网络的光伏发电预测结果和灰色关联度的光伏发电预测结果赋予不同的权值,采用组合预测技术对光伏发电功率进行预测。
简介:摘要电力系统的作用就是给各个行业和社会提供优质可靠电能,满足各个用户的需求。无论负荷的大小,对电力系统以后的规划或者运行研究来说,都有着重要的作用。随着电力系统的逐步发展,负荷预测也越来越显得重要。负荷预测是电力系统控制和行的基础,预测的准确与否对整个电力系统的运行、检修、规划等都有着至关重要的作用。
简介:摘要:现如今,我国的经济在迅猛发展,社会在不断进步,电力企业在我国发展十分迅速,为解决光伏发电系统发电功率在不同条件下误差较大问题,提出光伏发电系统发电功率预测新方法。通过分析光伏发电系统结构,研究光伏发电系统发电功率影响因素;以季节和天气类型作为历史样本选取样本源,针对气象部门提供的预测日分时气象数据在历史数据库中寻找相似数据点作为历史样本;依据历史样本构建离线参数寻优数据总集,使用核函数极限学习机算法构建发电系统发电功率预测模型,通过粒子群算法优化模型参数。实验结果表明:所提方法在不同条件下预测太阳能光伏发电系统发电功率的平均绝对百分比误差分别为 1.47%和 6.39%,光伏组件在综合异常条件下发电功率预测误差相对变化均低于 1%,证明所提方法满足实际预测要求。
简介:摘要本文阐述了电力系统负荷预测的概念。介绍了电力系统短期负荷预测的意义与特点。综合介绍了短期负荷预测的传统方法和现代方法,指出了它们的优缺点及一些相关改进方案。