简介:摘要本文基于传统的灰度阈值图像分割,利用图像增强中的微分梯度,对原有图像的细节进行锐化增强,然后再使用这三种方法进行分割,得到的分割结果和传统的分割方法得到的结果进行比较,该方法确实达到了改善分割后图像细节的效果。
简介:针对现有的图像分割方法存在的精度低、稳定性较差的问题,提出了一种基于猫群优化算法的图像多阈值分割方法。本文将猫群优化算法(CatSwarmOptimization,CSO)引入到图像分割中,以最大类间方差作为猫群优化算法求解的适应度函数,利用猫群优化算法中猫的两种行为模式——搜寻模式和追踪模式来快速搜寻图像多阈值分割的最佳阈值。实验表明,与粒子群优化算法(ParticleSwarmOptimization,PSO)、头脑风暴算法(BrainStormOptimization,BSO)和人工蜂群算法(ArtificialBeeColony,ABC)相比,CSO在图像分割时的精确性、收敛速度及稳定性上有显著优势。在3阈值图像分割时,所提方法找到最优个体需要的平均迭代次数最少,且稳定性比ABC、BSO和PSO分别提高了5%、10%和80%。