学科分类
/ 25
500 个结果
  • 简介:给出了具有时滞和时超的一非线性脉冲微分方程所有解为振动的充分条件,所得结论包含了线性情形作为其推论.

  • 标签: 脉冲 具偏差变元微分方程 振动性
  • 简介:分数微积分是一个古老而又新颖的课题,近30年来,由于在包括分形现象在内的物理、工程等诸多应用学科领域应用的拓展,激发了科研人员对分数微积分的巨大热情。分数微分方程现在已应用于分数物理学、混沌与湍流、粘弹性力学与非牛顿流体力学、高分子材料的解链、自动控制理论、化学物理、随机过程和反常扩散等许多科学领域。分数微分方程边值问题是非线性微分方程理论研究中一个活跃而成果丰硕的领域。本文讨论了分数微分方程边值问题的一些理论,介绍了作者的著作《分数微分方程边值问题理论及应用》的基本内容。

  • 标签: 分数阶微积分 边值问题 分数阶模型
  • 简介:本文给出了分数积分微分方程的一种新的解法.利用未知函数的泰功多项式展开将分数积分微分方程近拟转化为一个涉及未知函数及其n导数的线性方程组.数值例子表明该方法的有效性.

  • 标签: 泰勒多项式 分数阶 积分微分方程
  • 简介:本文讨论了二非线性摄动微分方程(a(t))x′(t))′+p(t)x′(t)+Q(t,x(t))=R(t,x(t),x′(t)).的解的振动性质。建立了两个新的振动性定理。其中第一个定理推广了[1]中的结果;第二个定理对于二线性方程(a(t)x′(t))′十p(t)x′(t)+q(t)x(t)=0来说也是新的。另外,本文顺便还指出了[2]和[3]中的疏漏之处。

  • 标签: 非线性 摄动微分方程 振动性
  • 简介:Grace和Lalli在[1]中分别讨论了方程x″(t)+q(t)f(x(t))g(x′(t))=0(E1)和x″(t)+q(t)f(x(σ(t)))g(x′(t))=0(E2)的解的振动性质,获得了关于方程(E1)和(E2)的两个振动性定理,文[2]讨论了二非线性时滞微分方程(a(t)ψ(x(t))

  • 标签: 时滞微分方程 振动性质 二阶非线性 非振动解 正则解 Grace
  • 简介:文中讨论了一类三非线性中立时滞微分方程非振动解存在的若干充分条件,并应用Banach不动点定理证明了这类微分方程解的有界性及不可数性,包含并改进了相关文献所得到的结果.

  • 标签: 非线性微分方程 非振动解 有界性 不可数性
  • 简介:利用函数平均值法和辅助函数,讨论了一类二非线性脉冲微分方程解的振动性质,并得到了这类方程解的振动的一组充分条件.

  • 标签: 二阶 非线性 脉冲微分方程 振动性
  • 简介:本文研究含小参数并具有非线性边界条件的二非线性微分方程ε′y″=h(t,y,εy′,ε)-10为任意常数,在一定的条件下,应用微分不等式理论证明了摄动解的存在,并获得渐近估计式。

  • 标签: 非线性常微分方程 微分不等式 奇异摄动 渐近估计式
  • 简介:给出了二常系数线性非齐次微分方程特解的一种公式求法,简化了二常系数线性非齐次微分方程特解的求解.

  • 标签: 二阶线性非齐次 特解 公式法
  • 简介:应用Gteen函数将分数微分方程边值问题可转化为等价的积分方程.近来此方法被应用于讨论非线性分数微分方程边值问题解的存在性.讨论非线性分数微分方程边值问题,应用Green函数,将其转化为等价的积分方程,并设非线性项满足Caratheodory条件,利用非紧性测度的性质和M6nch’s不动点定理证明解的存在性.

  • 标签: 边值问题 非紧性测度 Carathéodory条件 分数阶微分方程 CAPUTO分数阶导数
  • 简介:整数微分方程的古典解法特征根方法对于分数微分方程能不能适用?通过分数导数的积分下限取-∞,证明了指数函数f(t)=eπ的Riemann-Liouville型α导数为raert从而对Riemann-Liouville型分数非齐次常微分方程可以通过特征根方法求得它的通解。分数微分方程在通解中所含的相互独立的任意常数个数与一般传统的整数微分方程的规律不同,但却能相容的。

  • 标签: 分数阶导数 Riemann-Liouville型 特征根方法
  • 简介:考虑二常系数线性微分方程的降法.首先,写出二齐次常系数线性微分方程的特征方程,求出特征方程的两个特征根;然后,利用积分因子乘以微分方程和导数的运算,将二常系数线性微分方程化为一微分形式;最后,将一微分形式两边同时积分,求解一线性微分方程,可求得二常系数线性微分方程的一个特解或通解.利用降法,可以求得微分方程的一个特解或通解.其计算方法简单和方便,在实际中具有应用价值。

  • 标签: 二阶常系数线性微分方程 降阶法 特征根 一阶微分形式