简介:讨论了一类非线性分数阶微分方程三点边值问题解的存在性.微分算子是Riemann.Liouville导算子并且非线性项依赖于低阶分数阶导数.通过将所考虑的问题转化为等价的Fredholm型积分方程,利用Schauder不动点定理获得该三点边值问题至少存在一个解.
简介:本文运用Liapunov函数方法,研究了一类四阶非线性微分方程的周期解,得到了存在唯一渐近稳定的周期解的充分条件。
简介:应用Gteen函数将分数阶微分方程边值问题可转化为等价的积分方程.近来此方法被应用于讨论非线性分数阶微分方程边值问题解的存在性.讨论非线性分数阶微分方程边值问题,应用Green函数,将其转化为等价的积分方程,并设非线性项满足Caratheodory条件,利用非紧性测度的性质和M6nch’s不动点定理证明解的存在性.
简介:整数阶常微分方程的古典解法特征根方法对于分数阶常微分方程能不能适用?通过分数阶导数的积分下限取-∞,证明了指数函数f(t)=eπ的Riemann-Liouville型α阶导数为raert从而对Riemann-Liouville型分数阶非齐次常微分方程可以通过特征根方法求得它的通解。分数阶常微分方程在通解中所含的相互独立的任意常数个数与一般传统的整数阶微分方程的规律不同,但却能相容的。
简介:考虑二阶常系数线性微分方程的降阶法.首先,写出二阶齐次常系数线性微分方程的特征方程,求出特征方程的两个特征根;然后,利用积分因子乘以微分方程和导数的运算,将二阶常系数线性微分方程化为一阶微分形式;最后,将一阶微分形式两边同时积分,求解一阶线性微分方程,可求得二阶常系数线性微分方程的一个特解或通解.利用降阶法,可以求得微分方程的一个特解或通解.其计算方法简单和方便,在实际中具有应用价值。