简介:以鞅变换为工具,刻画了Orlicz-Hardy鞅空间之间的相互关系.即采用构造性方法,证明了如下结论:(1)设Φ_1是凹函数,其下指标q_(Φ_1)〉0,Φ_2是凸函数,其上指标p_(Φ_2)〈∞.则鞅f∈H_(Φ_1)~s,当且仅当f是H_(Φ_2)~s中某个鞅g的鞅变换;(2)设Φ是凹函数,其下指标q_Φ〉0.则鞅f∈H_Φ~s,当且仅当f是BMO_2中某个鞅g的鞅变换.
简介:本文旨在给出Banach空间值Hardy—Lorentz鞅空间的共轭空间的完全刻画.首先,对B值鞅引入了一类新的广义Lipschitz鞅空间及“原子鞅”的概念;其次,对B值Hardy-Lorentz鞅空间建立了“原子鞅”的分解定理;最后,以此为工具证明了其共轭空间是广义Lipschitz鞅空间.所得结论将已有的相应结果由实值鞅推广到Banach空间值鞅的情况.
简介:研究由算子值乘子序列所生成的广义鞅变换算子在向量值Garsia型鞅空间上的一系列Φ-不等式.作为应用,给出了Garsia型鞅空间中极大算子与p阶均方算子之间的Φ-不等式的证明并加以推广,所得结论与Banach空间的几何性质有着密切联系.
简介:通过对可预报向量值弱Hardy-Orlicz鞅空间wPB^Φ建立弱原子鞅分解,并借助广义的Davis鞅分解定理,证明了有限鞅在向量值弱Hardy-Orlicz鞅空间wHB^Φ中稠密的充分必要条件是Banach空间B具有Radon-Nikodym性质,所得结果推广了已有文献中的相应结论.
简介:Let1
简介:本文研究Hardy-Lorentz-Karamata空间中鞅的凹函数不等式,具体而言,设Φ是一凹函数,证明了若干关于鞅的极大函数M(f)、均方函数S(f)和条件均方函数s(f)之间的"Φ-Lp,q,b"型不等式.为了获得这些结果,建立了一些新的原子分解定理.
简介:从定量的角度分析了附有回购条款的可转换债券的价值构成,并在股票价格服从对数正态分布的条件下,利用MartinglePricing方法推导出其定价公式.