简介:描述行星规律的R-L矢量在笔者所见的文献中只指出了它的方向但末证明,本文对其加以了证明;并在此基础上比较简略地计算了它的大小;进而讨论了它的物理意义。
简介:Thispaperconsiderstheasymptoticstabilityanalysisofbothexactandnumericalsolutionsofthefollowingneutraldelaydifferentialequationwithpantographdelay.{x′(t)+Bxd(t)+Cx′(qt)+Dx(qt)=0,t>0,x(0)=X0,}whereB,C,D∈C^d×d,q∈(0,1),andBisregular.Aftertransformingtheaboveequationtonon-automaticneutralequationwithconstantdelay,wedeterminesufficientconditionsfortheasymptoticstabilityofthezerosolution.Furthermore,wefocusontheasymptoticstabilitybehaviorofRunge-Kuttamethodwithvariablestepsize.ItisprovedthataLstableRunge-Kuttamethodcanpreservetheabove-mentionedstabilityproperties.
简介:穿孔等离子弧焊接过程中,小孔的形状和尺寸决定着热源热流密度的分布和温度场的分布,从而影响着焊接过程的稳定性和焊接质量。本文利用四阶Runge-Kutta法求解在小孔壁上的力的控制方程组。数据表明模拟结果与试验观测现象基本吻合。
简介:[篇名]Anewtime-domaindiscontinuousspace-vectorPWMtechniqueinovermodulationregion,[篇名]ANovelDelta-SigmaModulatedSpaceVectorModulationSchemeusingScalarDelta-SigmaModulators,[篇名]Fullydigitalvectorcurrentcontrolofthreephaseshuntactivepowerfilters,[篇名]Implementationofmatrixconverterspacevectorcontrolinprogrammablelogic,[篇名]Mitigationofsaturationindynamicvoltagerestorerconnectiontransformers,[篇名]Powerconditionercontrolandprotectionfordistributedgeneratorsandstorage。
简介:概论三相交流电动机,概特别是异步电动机,由于其结构简单,成本低廉,维护保养容易。工作可笑等优点被广泛应用。但它的调速性能却很差。所以在三相交流电动机近百年的历史上。难觅其在可调速传动中的踪迹。直到上个世纪八十年代在需要调速领域特别是牵引方面,几乎仍全部由直流电动机作为驱动源。但是,由于直流电动机有换向问题.及因换向而带来的大量的维护保养问题,更使其在大容量高调速比的传动系统中的运用中遇到难以克服的困难。因此自上世纪30年代开始便有国家提出了交流调速传动的设想,并付诸行动。如无换向器电机装置.水银整流器串级调速等,但由于理论上的不成熟.及当时电力电子学的滞后使这些试验无法达到实用化要求.上个世纪的1971年德国人F·Blaschke首先提出的矢量变换制(TransVectorControl)为异步电动机在调速传动中取代直流电动机指明了方向。
简介:Thispaperfirstpresentsthestabilityanalysisoftheoreticalsolutionsforaclassofnonlinearneutraldelay-differentialequations(NDDEs).Thenthenumericalanalogousresults,ofthenaturalRunge-Kutta(NRK)methodsforthesameclassofnonlinearNDDEs,aregiven.Inparticular,itisshownthatthe(k,l)-algebraicstabilityofaRKmethodforODEsimpliesthegeneralizedasymptoticstabilityandtheglobalstabilityoftheinducedNRKmethod.
简介:ImplicitRunge-Kuttamethodishighlyaccurateandstableforstiffinitialvalueproblem.ButtheiterationtechniqueusedtosolveimplicitRunge-Kuttamethodrequireslotsofcomputationalefforts.Inthispaper,weextendtheParallelDiagonalIteratedRungeKutta(PDIRK)methodstodelaydifferentialequations(DDEs).WegivetheconvergenceregionofPDIRKmethods,andanalyzethespeedofconvergenceinthreepartsfortheP-stabilityregionoftheRunge-Kuttacorrectormethod.Finally,weanalysisthespeed-upfactorthroughanumericalexperiment.TheresultsshowthatthePDIRKmethodstoDDEsareefficient.
简介:1.IntroductionConsidertheinitialvalueproblemwhichisassumedtohaveauniquesolutiony(t)ontheinterval[0,+co).Forsolving(1.1),considerthes--stageimplicitRunge-Kutta(IRK)methodandthes-stagemono-implicitRunge-Kutta(MIRK)method{2,51swhereh)0isthestepsize,hi,c...
简介:Runge-Kuttamethodiswidelyappliedtosolvetheinitialvalueproblemofordinarydifferentialequations.TheimplicitRunge-Kuttawithbetternumericalstabilityforthenumericalintegrationofstiffdifferentialsystems,buttheformulatehastraditionallybeenonsolvingthenonlinearequationsresultingfromamodifiedNewtoniterationineverytime.Semi-implicitformulatehavethemajorcomputationallyadvantagethatitisnecessarytosolveonlylinearsystemsofalgebraicequationstofindtheKa.
简介:HighlyunderexpandedaxisymmetricjetwassimulatedusingtheRunge-KuttaDiscontinuousGalerkin(RKDG)finiteelementmethod,which,basedontwo-dimensionalconservationlaws,wasusedtosolvetheaxisymmetricEulerequations.Thecomputedresultsshowthatthecomplicatedflowfieldstructuresofinterest,includingshockwaves,slipstreamsandthetriplepointobservedinexperimentscouldbewellcapturedusingtheRKDGfiniteelementmethod.Moreover,comparisonsoftheMachdisklocationexhibitexcellentagreementsbetweenthecomputedresultsandexperimentalmeasurements,indicatingthatthismethodhashighcapabilityofcapturingshockswithoutnumericaloscillationandartificialviscosityoccurringnearthediscontinuouspoint.