简介:让G=(V(G),E(G))有顶点的一张图被给V(G)和边集合E(G)。为二不同顶点x和图G的y,让R<潜水艇class=“a-plus-plus”>G{x,y}表示顶点z的集合以便到z的从x的距离不等于从y的距离到在G的z。为在V(G)上并且为UV(G)定义的功能g,让g(U)=<潜水艇class=“a-plus-plus”>sUg。真实值的功能g:V(G)[0,1]如果,是G的解决的功能g(R<潜水艇class=“a-plus-plus”>G{x,y})1为任何二不同顶点x,yV(G)。部分公制的尺寸暗淡<潜水艇class=“a-plus-plus”>图G的f(G)是min{g(V(G)):g是G的解决的功能}。让G<潜水艇class=“a-plus-plus”>1和G<潜水艇class=“a-plus-plus”>2拆散图G的拷贝,并且让:V(G<潜水艇class=“a-plus-plus”>1)V(G<潜水艇class=“a-plus-plus”>2)是bijection。然后,排列图G=(V,E)顶点给了V=V(G1)V(G2)和边给了E=E(G1)E(G2){uv|v=(u)}。首先,我们为任何树T决定dimf(T)。我们显示出那\(1for任何东西连接了顺序的图G至少3,在S(G)表示G的支持顶点的集合的地方。我们也显示出那,为任何>0,在那里存在排列图G以便暗淡f(G)-1h1以便暗淡f(G)h1(dimf(G为所有对的))(G,),也不在那里功能h
简介:LetMbeaconvexChebyshevsubsetofauniformlyconvexanduniformlysmoothBanachspace.ItisprovedthatthemetricprojectionP_MofXontoMisuniformlycontinu-ousoneveryboundedsubsetofX.Moreover,aglobalandexplicitestimateonthemodulusofcontinuityofthemetricprojectionisobtained.
简介:Throughoutthispaper,let(Ω,ι,μ)beaprobabilityspace,Dthecollectionofallleft-continuousdistributionfunctions,andD~+={F(0)=0|F∈D},andL(Ω)thecollec-tionofallrandomvariableswhichisa.s.finiteonΩ,andL~+={ξ≥0a.s.|ξ∈L(Ω)}.Forrandommetric(normed)spaces,see[1]or[2].Theorem1Let(M,d)beacompletemetricspacef:M→M,acontractmappingwithcontractcoefficientα∈[0,1),L(Ω,m)thecollectionofallM-valuedrandomvari-
简介:Themultipolemomentmethodnotonlyconducestotheunderstandingofthedeformationofthespace-time,butalsoservesasaneffectivetooltoapproximatelysolvetheEinsteinfieldequationwith.However,theusualmultipolemomentsarerecursivelydeterminedbyasequenceofsymmetricandtrace-freetensors,whichisinconvenientforpracticalresolution.Inthispaper,wedevelopasimplifiedproceduretogeneratetheseriessolutionstothemetricofthestationaryvacuumwithaxisymmetry,andshowitsvalidity.Inordertounderstandthefreeparametersinthesolution,weproposetotaketheSchwarzschildmetricasastandardruler,andsomewell-knownexamplesareanalysedandcomparedwiththeseriessolutionsindetail.
简介:Let(M,g)beann-dimensionalRiemannianmanifoldandT*MbeitscotangentbundleequippedwiththerescaledSasakitypemetric.Inthispaper,wefirstlystudytheparaholomorphypropertyoftherescaledSasakitypemetricbyusingsomecompatibleparacomplexstructuresonT*M.Second,weconstructlocallydecomposableGoldenRiemannianstructuresonT*M.FinallyweinvestigatecurvaturepropertiesofT*M.
简介:我们学习公制的n躺着代数学G\mathcal的结构{G}在复杂领域上。让G=S?R\mathcal{G}=\mathcal{S}\oplus\mathcal{R}是Levi分解,在此R\mathcal{R}是G\mathcal的激进分子{G}并且S\mathcal{S}是G\mathcal的强壮的semisimplesubalgebra{G}。由m(G)表示m\left(\mathcal{G}\right)不能分解的公制的n躺着代数学和R^\mathcal的所有最小的理想的数字{R}^\botR的直角的补充。我们获得下列结果。作为S\mathcal{S}-modules,R^\mathcal{R}^\bot对双模块同形${\mathcal{G}\mathord{\left/{\vphantom{\mathcal{G}\mathcal{R}}}\right。\kern-\nulldelimiterspace}\mathcal{R}}${\mathcal{G}\mathord{\left/{\vphantom{\mathcal{G}\mathcal{R}}}\right。\kern-\nulldelimiterspace}\mathcal{R}}。向量空间的尺寸在G\mathcal上由所有nondegenerate跨越了不变的对称的双线性的形式{G}等于G\mathcal上的某些线性转变的向量空间的{G};这种尺寸比大或等于+1m\left到m(G)(\mathcal{G}\right)+1。R\mathcal的centralizer{R}在G\mathcal{G}等于所有最小的理想的和;它是R^\mathcal的直接的和{R}^\bot和G\mathcal的中心{G}。最后,G\mathcal{G}没有强壮的semisimple理想如果并且仅当R^椠?楤晳癡?
简介:AnexampleofcompletsRiemannianmetricofpositive(ornonnagative)curvatureonR^nsuchasds^2=a(x)dx^2isobtainedbydirectcaculations.Furthermore,byusingageodesicconvexconditionandatheoremforcompletenoncompactRiemannianmanifold,anexistenceresultofperiodicsulutionofprescribedenergyforasingularHamiltoniansystemisalsoobtained.
简介:TheLeray-Schaudertopologicaldegreetheoryisestablishedintheprobabilisticlinearnormedspaces.Based.onthistheory,somefixedpointtheoremsformappingsintheprobabilisticlinearnormedspacesareshown.