学科分类
/ 3
53 个结果
  • 简介:设G是一个2—(v,11,1)设计的可解区传递但非旗传递自同构群,且G点一本原则,则v=p^n,G≤AГL(1,p^n)且p≠2。

  • 标签: 自同构群 传递 原则
  • 简介:一、引导文教学法及其特点柏林工大的教育专家杜霖先生形象地把学习比作“呼吸”的过程,强调学习者不仅要“吸进”还要“呼出”。他指出:学习的核心是“呼吸”,伴随着思考和分析,把记忆的东西进行融合、转化成实际问题和任务,然后去解决问题。完整的学习过程至少应该包括思考、记忆、表达、传递以及行动。

  • 标签: 教学法 单元设计 财务软件 引导 学习过程 应用
  • 简介:本文要证明不存在一个非平凡2-(v,k,3)对称设计,它的旗传递自同构群的基柱是^2F4(q2)

  • 标签: 设计旗 传递 自同构群
  • 简介:《倒推的策略》是苏教版五年级下册的教学内容,教材的编写意图是,通过学生分析具体情境中的实际问题,体验“倒过来推想”的策略解决特定问题的价值,学习并掌握运用“倒过来推想”的策略解决问题的思路,进一步发展学生分析、综合和进行简单推理的能力.“倒推策略”的实质就是“过程或运算的可逆性思想以及相应的互逆运算”,因此,“倒推策略”可以分解成两个可操作的步骤:“正着记录、倒着计算”.但这一实质的获得需要学生积累一定的数学基本活动经验.那么,如何基于数学基本活动经验来设计这一课的教学呢?

  • 标签: 教学设计 数学 教学内容 逆运算 苏教版 学生
  • 简介:新课程理念下,教师应积极创设问题情境,努力为学生提供自主探索和动手操作的机会,鼓励学生创新思考,着力培养学生的创新能力,为学生将来的可持续发展奠定基础.I对传统教学模式的再认识当前,数学课程的改革,对数学教育提出了挑战和更高要求.那如何改革当前的数学教学,才能适应新课程教学呢?必须走出传统的封闭的数学教学模式.“教学模式是指在一定的教育思想、

  • 标签: 传统教学模式 课程理念 教学观念 数学教学模式 设计 优化
  • 简介:高等数学课程对实现高校的人才培养目标起着十分重要的作用.在当前按照专业大类招生并组织教学的情况下,高等数学的课程教学遇到了前所未有的问题与挑战.总结近年来我校高等数学课程体系和教学内容改革的实践经验,重新设计了高等数学课程的体系(模块),提出了进行了相应教学内容改革的意见,形成了整体课改方案,并分析了本方案所具有的特色.

  • 标签: 高等数学 课程体系 教学内容
  • 简介:《义务教育数学课程标准(2011版)》明确提出使学生获得数学“基本思想”和“基本活动经验”的目标,从而把“双基”扩展为“四基”.“四基”即数学基础知识、基本技能、基本思想、基本活动经验.“四基”中的“数学基本活动经验”引起了广大教师的兴趣,就此展开了广泛的研究和讨论.课堂教学中开展数学实验,是帮助学生积累数学活动经验的基本形式.但是不少实验设计和教学设计只是让学生经历了一定的实验活动或探究活动,并没有使学生真正获得并积累数学活动经验.本文拟从“勾股定理的探究”这一具体实验案例出发,从如何形成并积累数学活动经验的角度进行分析,提出改进建议,以期抛砖引玉.

  • 标签: 数学活动 实验设计 积累 不等 数学课程标准 义务教育
  • 简介:1赛题分析2017年美国大学生数学建模竞赛B题为"Mergebetteraftertoll",研究高速公路收费广场的结构和车流管理的问题。这是一个思路开放、做法多样的题目。虽然题目要求的是以经济、高效和安全为主要目标,设计收费广场的结构、布局以及收费方式和车流管理模式,但本质上是探讨收费广场车辆缴费后的车辆变道问题。

  • 标签: 收费广场 管理模式 高速公路 优化模型 车流 设计
  • 简介:本刊编辑部连续数年组织高校老师对美国大学生数学建模竞赛(MCM/ICM)的赛题进行研究。参与研究的老师首先详细阅读每道题目获得Outstanding奖的所有论文,然后在这些获奖论文的基础上给出详细解答。本刊已经在第6卷第2期刊登了2017年MCM/ICM的6道题目的详细解答,本期刊登各位研究老师对获奖论文的评论和对题目的评述。

  • 标签: MCM ICM 梯级水库 赞比西河 评论 管理
  • 简介:通过力和力矩的平衡、悬链线方程等给出2016年全国大学生数学建模竞赛A题的一种解答,并对学生答卷的不同方法和结果进行简单的点评。

  • 标签: 系泊系统 悬链线 微元分析
  • 简介:智慧课堂是以关注学生的学习过程,完善学生的人格成长,促进学生的智能发展,提高学生的综合素质为目标的课堂,最终实现以提升学生核心素养、合作探究能力、综合思维能力为指向的智慧发展.

  • 标签: 教学设计 教学研究 课堂 智慧 高中数学 素养
  • 简介:作为发展学生学习能力的重要场所,实施新课改理念的主要阵地,打造高效课堂成了每位教育工作者所期冀的目标玄武区始终聚焦课堂的重点问题,并能与时俱进地推进区域教学研究,丰富教育理论与实践,历经近一年的调研和论证而产生的“新三学”课堂正体现了玄武教育工作者对教学的执着追求和精益求精

  • 标签: 教学体会 二元一次方程 课堂 教学设计 教学探索 教育工作者