简介:摘要电力负荷预测是电网公司的一项重要工作,现实中很多因素均能导致负荷变动,故电力负荷具有周期变动以及随机变动的特征。任何一种单一预测法均不能较为全部的预测电力体系负荷变动,对于这个问题,这篇文章引进竞争理论,将BP神经网络(BPNN)与自回归滑动均匀模型(ARMA)相联系,构建成组合式预测法(ARMA-BPNN),其归纳使用了两者的长处,能够预测周期性和非线性电力负荷变动。该预测办法的BPNN预测电力负荷的非线性规则,ARMA预测周期性规则,最终将两者预测成果叠加,得出最终的负荷变动规则。表明,ARMA-BPNN兼具两者长处,起到了优势互补的效果,提高了电力负荷预测的精准度。
简介:摘要:根据吐鲁番地区电网发展规划及大用户用电情况情况,分析了地区夏季、冬季实际负荷特性的不同。根据不同的负荷预测方法进行分析,有针对性地提出了提高地区负荷预测准确率的有限措施与办法,更好地为地区电网建设,社会经济发展提供可靠保证。
简介:摘要:国内电力企业依据“SG186标准化设计规范”基本完成了电力营销系统的建设,该系统几乎覆盖了整个中国的信息网络,实现了横向、纵向的一体化信息平台的建设,电力营销业务应用、相关数据采集与处理等子系统也得到了更为广泛的应用。智能电网建设步伐的不断加快,电力营销系统也步入了发展的快速阶段,依据国家电网需求,电力营销系统规划了计量生产调度平台、智能互动网站、营销稽查监控等多套业务系统,全面覆盖了电力营销系统,具有普遍应用性,满足多家电力公司的应用需求。与此同时,中国还发布了《中国电力大数据发展白皮书》,标志着电力大数据时代的开始。本文对基于预测模型的电力精准营销框架进行分析,以供参考。
简介:摘要:本文综合探讨了电力设备状态监测与故障预测的关键技术,包括光纤传感技术、在线监测技术、高频监测技术、机器学习方法、深度学习方法和时间序列分析。通过案例分析,展示了如何利用这些技术对变压器设备进行实时数据采集、特征提取、故障诊断和寿命预测,有效提升了变压器设备的可靠性和安全性,降低了维护成本,延长了使用寿命。
简介:摘要:电力负荷预测在电力系统规划和运行中具有重要作用。为了提高预测精度,本研究提出了一种基于深度学习的电力负荷预测模型。首先,收集并预处理了历史电力负荷数据及相关气象数据。其次,构建了包含长短期记忆网络(LSTM)和卷积神经网络(CNN)的混合模型,通过特征提取和时间序列分析相结合的方法来进行负荷预测。模型训练过程中,采用了交叉验证和超参数优化技术,以提高模型的泛化能力和稳定性。实验结果表明,相比传统预测方法,本研究所提出的深度学习模型在预测精度和鲁棒性方面均有显著提升。该研究为电力负荷预测提供了一种有效的方法,具有广泛的应用前景。
简介:摘要:本文旨在研究车间电力负荷预测与优化调度策略,以提高车间的能源利用效率和生产效率。通过对车间电力负荷数据的分析和预测,结合优化调度算法,实现对车间电力负荷的合理分配和调度,从而降低能源消耗和生产成本。本文采用了多种方法进行研究,包括数据采集与分析、负荷预测模型建立、优化调度算法设计等。通过实际案例验证了所提出的方法的有效性和可行性。本文的研究结果对于车间电力负荷管理具有重要的参考价值和实际意义。