简介:研究完整力学系统的Noether对称性、Lie对称性和形式不变性,以及由它们导致的Noether守恒量、Hojman守恒量和一类新型守恒量。
简介:通过欧拉方法可将Duffing-Holmes方程变换为离散非线性动力学系统,得到标准Holmes映射.研究该映射不动点的存在性与稳定性条件,并运用中心流形定理分析映射的Pitchfork分支,Flip分支和Hopf分支的存在性,具体给出了发生相应分支所满足的参数条件.此外,证明了映射存在Marotto意义下的混沌,最后用数值模拟验证了所得理论结果.
简介:提出了一个新的四维自治类新混沌系统.首先在整数阶下分析了该系统的基本动力学特性.并利用数值仿真、功率谱分析了当参数固定时,分数阶新混沌系统随微分算子阶数变化时的动力学特性.研究表明:当微分算子阶数为0.85时,分数阶新系统随参数变化经短暂混沌和边界转折点分叉而进入混沌.针对一类结构部分未知分数阶混沌系统,基于Chebyshev正交函数神经网络,稳定性理论[14]和分数阶PI滑模面构造方法设计了一种新型的含有补偿器的自适应非线性观测器,实现了分数阶新混沌系统的投影同步.数值仿真验证了设计方法的有效性.