简介:用不同于已有的方法证明了任意实Banach空间中一致Lipschitz强连接伪压缩算子在具误差的修正的Mann迭代和具误差的修正的Ishikawa迭代下收敛和稳定的等价性,其中迭代参数{βn}仅需limsupn→∞βn〈k/L(L+1),这推广和改进了目前需假设limn→∞βn=0和两迭代程序初始点的取值需相同条件下的已有结果.
简介:在一类新的G-凸度量空间中建立了一类新的KKM定理,统一、改进和发展了文献中的相应结果.作为应用,得到了几个新的匹配定理和不动点定理.
简介:在不要求C0-半群为紧半群的前提下.利用函数e^-λt(其中λ〉0是常数)和Monch不动点定理,在更广泛的条件下,得到了Banach空间中一类半线性混合型发展方程初值问题的整体mild解和正mild解,本质上改进和推广了已有相关结果.
简介:研究了超凸度量空间中非扩张映象不动点的逼近问题,得到了具误差的Ishikawa迭代序列收敛到不动点的一个充要条件.
简介:本文研究了一种修正的Shepard—Lagrange型插值算子在Orlicz空间内的逼近性质,证明了它在Orlicz空间内的有界性,利用光滑模、Hardy—Littlewood极大函数、N函数的凸性及Jensen不等式给出了该算子在Orlicz空间内的逼近度估计.
简介:文章利用正规对偶映射的定义,给出了任意Banach空间Lipschitz强伪压缩映射不动点的Ishikawa迭代收敛定理.该定理不仅推广了已知结果,而且还简化了目前相应结果的证明.
简介:深化对本性谱的认识;给出∑_e~n(n≥2)型Banach空间上的摄动类问题的反面回答.