简介:针对随机时滞和异步相关噪声情况下的状态估计问题,提出了一种改进的高斯滤波算法(GF),并给出了其适用于高维系统的实现形式—随机时滞和异步相关容积卡尔曼滤波器(CKF-RDCN)。首先,通过满足Bernoulli分布的互不相关随机序列,来描述系统观测数据中可能存在的随机时滞现象,将量测噪声作为状态变量用以实现对观测时滞后验概率密度的估计。其次,利用一阶斯特林插值公式来近似估计,由于过程噪声和量测噪声异步相关,而导致的含有随机变量的多维积分问题。最后,依据三阶球径容积法则,给出了CKF-RDCN滤波算法的详细设计。此外,经典GF算法是所提出的改进GF算法的特例,其作为一个通用的非线性滤波算法框架,根据不同的后验概率密度估计方法,可以有不同的实现形式。仿真结果表明,相比于扩展卡尔曼滤波算法(EKF)以及容积卡尔曼滤波算法(CKF),CKF-RDCN在解决含有观测时滞和相关噪声系统的状态估计问题时,具有更高的精度和更好的数值稳定性。
简介:TNNS(真航向导航系统)由MS860接收机、INS及处理数据的PC/104架构的嵌入式工控机构成.针对TNNS推导了INS(惯性导航系统)的误差模型,提出了适合于TNNS的降阶扩展卡尔曼滤波算法组合GPS和INS。系统在东海作了三次海试,软件及滤波算法平台由C/C++编制.海上试验表明,组合滤波后,INS的位置误差由i00m降低到40m以下;进行最优化滤波后的航向误差α由原来的0.105°减小为0.034°,纵横摇的误差也大幅减小.整个海试结果表明,在TNNS中组合GPS/INS采用的降阶扩展卡尔曼滤波算法,大幅提高了系统精度和可靠性.
简介:沿试验段侧壁发展的附面层是影响飞行器半模型实验数据精准度的主要因素之一.利用数值模拟方法验证了涡流发生器减小附面层影响的可行性,重点分析了安装角度、结构尺寸、安装位置及个数等设计参数对附面层内速度分布的影响规律,对涡流发生器尾涡强度以及沿流向的发展规律进行了初步探讨.结果表明,涡流发生器产生的尾涡能够有效改善附面层内的速度分布,进而减小附面层厚度,降低附面层影响;涡流发生器的后缘应略高于当地附面层厚度,安装角度、位置、个数等参数必须合理设计以减小涡流发生器对试验段主气流的影响.基于计算结果初步设计了可用于2.4m跨声速风洞半模试验段的涡流发生器,在亚声速范围内能够减小模型区侧壁附面层厚度66%左右,对核心流Mach数影响小于0.003,为涡流发生器的实际应用提供了依据.
简介:针对四旋翼无人机鲁棒自适应飞行问题,提出了一种基于指数收敛的控制方法。考虑到四旋翼系统的欠驱动、强耦合等非线性特性,采用线性化反馈控制策略实现对其轨迹追踪飞行能力的基本控制;针对线性化反馈控制易受系统内外部未知干扰等影响,采用基于指数收敛干扰观测器组合控制设计,实现四旋翼飞行的鲁棒与自适应控制;线性反馈及状态观测器控制系统基于指数收敛稳定。进行了仿真分析,结果表明,干扰观测器对四旋翼系统中存在的未知干扰具有很好的估计能力,所设计的基于指数收敛控制系统,结构简单,且具有较强的干扰抑制能力和较高的系统稳定性,满足四旋翼无人机的鲁棒及自适应飞行能力要求。
简介:提出了一种新的基于数字信号处理器(DSP)TMS320LF2407A和专用驱动芯片ML4428的陀螺用无位置传感器无刷永磁直流电机(BLDCM)稳速控制系统。它采用芯片ML4428实现无刷直流电机速度控制系统中的反电势检测、换相和功率驱动,并使用数字信号处理器TMS320LF2407A作为控制处理器,实现了电机的起停控制、转速给定,转速检测。它还采用了锁相环技术和积分分离的PID控制算法,大大提高了系统的控制性能和可靠性。
简介:针对液压仿真转台伺服系统的非线性特点,提出了一种模糊控制与局部积分控制相结合的复合控制方式.当系统的偏差较大时主要采用模糊控制器对系统的偏差进行快速调节以加快系统的响应过程;当系统的偏差小于某一值时,加入积分控制以保证系统的精度.为了提高模糊控制器的性能,采用了规则可调整的模糊控制器.实验结果表明:该方法能有效地克服液压伺服系统的非线性和参数的不稳定性以及外部干扰对系统的影响,具有较高的控制精度和鲁棒性能,完全适合于液压仿真转台伺服系统的控制.
简介:针对四旋翼无人机轨迹追踪问题,提出了一种基于扩张状态观测器的鲁棒滑模控制方法。考虑无人机系统受到内外部扰动、线速度未知等不确定性影响,通过引入扩张状态观测器,对系统不确定因素进行实时估计并给予补偿,实现了系统对扰动的鲁棒性和对环境的高度适应性。同时,滑模控制通过引入切换函数来消除干扰及不确定项,但较大的切换增益会引起系统颤振,因此,干扰和不确定项是颤振的主要来源,利用扩张状态观测器来估计干扰及不确定项并加以补偿,消除了颤振。利用Lyapunov理论,证明了控制系统的稳定性。系统仿真实验结果表明,所提出的控制方法能够保证四旋翼无人机轨迹追踪的鲁棒性,旋翼转速最大跳变幅值降低86.4%-94.5%,提高了系统稳定性。