简介:低密度奇偶校验码(LowDensityParityCheckcodes,LDPCcodes)和极化码(Polarcodes),是国际移动通信标准化组织3GPP在5G(5th-Generation)增强移动宽带场景的信道编码技术方案中,分别作为数据信道和控制信道的编码方案.LDPC码编码复杂度较高、硬件资源需求较大以及存在错误平层,而极化码具有线性编码复杂度以及瀑布式下降曲线,基于二者的级联系统可以大大改善彼此的缺点.首先我们研究分析了现有的级联系统,其次详细介绍了级联系统的实现方法,最后就级联系统研究中现存问题进行了分析,并探讨了其未来发展趋势.
简介:目前LDPC码和Turbo码广泛应用于3G和4G商用移动通信系统中,并且在无线局域网、光纤通信、水下通信、视频和图象的加密以及网络安全等方面也发挥着重要的作用.由于全球在不同地区的移动通信设备只支持一种码,这使得移动通信有一定的地域局限性并影响通信质量.因此,通过对LDPC码和Turbo码译码过程的研究与结合,实现一种高性能的LDPC/Turbo码双模译码器具有重要意义.文章回顾了目前LDPC/Turbo码双模译码器的发展情况,并针对存在的不足进行分析和总结,最后介绍LDPC码和极化码未来发展的趋势.
简介:在考虑客户满意度和生产过程中不确定性因素前提下研究了混装线投产排序问题.以三角模糊数表示加工时间、六点模糊数表示完工时间,建立了基于交货期的客户满意度评价方法.并进一步以满意度为优化目标,结合模糊不确定因素,建立了混装线投产排序问题数学模型,并通过遗传算法进行求解.最后,通过数据实例分析了客户满意度与完工时间的相互影响,主要从三个角度对结果进行分析:(1)最小生产单元MPS(MinimumProductSet)内产品比例的均衡性对客户满意度和模糊完工时间的影响;(2)MPS内产品比例相同的条件下,模糊交货期区间权重比例对客户满意度的影响;(3)相同条件下,客户满意度和模糊完工时间分别作为优化目标时两者之间的差异.从而验证了该模型的有效性.
简介:域自适应算法是一种能有效解决训练集(源域)和测试集(目标域)样本分布不一样但是具有相关性的方法.文章提出一个跨领域分布适配超限学习机(DDM-ELM)用于解决域自适应问题.DDM-ELM旨在基于超限学习机的框架下,充分利用丰富的有标签源域样本和无标签目标域样本,得出一个精确的目标域分类器.具体来说,DDM-ELM同时满足以下目标:1)最小化源域样本的分类误差;2)通过最小化投影最大化均值偏差来有效减小源域和目标域的分布差距;3)利用目标域样本的流形正则化来探索目标域样本的几何机构特性.这使得DDM-ELM能在同时继承超限学习机优点的前提下更加适合于目标域样本.经过大量的实验结果证明,相比于几种先进的域自适应方法,DDM-ELM在分类准确率和效率上均有所提高.